ترغب بنشر مسار تعليمي؟ اضغط هنا

Characterizing References from Different Disciplines: A Perspective of Citation Content Analysis

156   0   0.0 ( 0 )
 نشر من قبل Chengzhi Zhang
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Multidisciplinary cooperation is now common in research since social issues inevitably involve multiple disciplines. In research articles, reference information, especially citation content, is an important representation of communication among different disciplines. Analyzing the distribution characteristics of references from different disciplines in research articles is basic to detecting the sources of referred information and identifying contributions of different disciplines. This work takes articles in PLoS as the data and characterizes the references from different disciplines based on Citation Content Analysis (CCA). First, we download 210,334 full-text articles from PLoS and collect the information of the in-text citations. Then, we identify the discipline of each reference in these academic articles. To characterize the distribution of these references, we analyze three characteristics, namely, the number of citations, the average cited intensity and the average citation length. Finally, we conclude that the distributions of references from different disciplines are significantly different. Although most references come from Natural Science, Humanities and Social Sciences play important roles in the Introduction and Background sections of the articles. Basic disciplines, such as Mathematics, mainly provide research methods in the articles in PLoS. Citations mentioned in the Results and Discussion sections of articles are mainly in-discipline citations, such as citations from Nursing and Medicine in PLoS.



قيم البحث

اقرأ أيضاً

Automatically extracting key information from scientific documents has the potential to help scientists work more efficiently and accelerate the pace of scientific progress. Prior work has considered extracting document-level entity clusters and rela tions end-to-end from raw scientific text, which can improve literature search and help identify methods and materials for a given problem. Despite the importance of this task, most existing works on scientific information extraction (SciIE) consider extraction solely based on the content of an individual paper, without considering the papers place in the broader literature. In contrast to prior work, we augment our text representations by leveraging a complementary source of document context: the citation graph of referential links between citing and cited papers. On a test set of English-language scientific documents, we show that simple ways of utilizing the structure and content of the citation graph can each lead to significant gains in different scientific information extraction tasks. When these tasks are combined, we observe a sizable improvement in end-to-end information extraction over the state-of-the-art, suggesting the potential for future work along this direction. We release software tools to facilitate citation-aware SciIE development.
Accessibility research sits at the junction of several disciplines, drawing influence from HCI, disability studies, psychology, education, and more. To characterize the influences and extensions of accessibility research, we undertake a study of cita tion trends for accessibility and related HCI communities. We assess the diversity of venues and fields of study represented among the referenced and citing papers of 836 accessibility research papers from ASSETS and CHI, finding that though publications in computer science dominate these citation relationships, the relative proportion of citations from papers on psychology and medicine has grown over time. Though ASSETS is a more niche venue than CHI in terms of citational diversity, both conferences display standard levels of diversity among their incoming and outgoing citations when analyzed in the context of 53K papers from 13 accessibility and HCI conference venues.
We explore the degree to which papers prepublished on arXiv garner more citations, in an attempt to paint a sharper picture of fairness issues related to prepublishing. A papers citation count is estimated using a negative-binomial generalized linear model (GLM) while observing a binary variable which indicates whether the paper has been prepublished. We control for author influence (via the authors h-index at the time of paper writing), publication venue, and overall time that paper has been available on arXiv. Our analysis only includes papers that were eventually accepted for publication at top-tier CS conferences, and were posted on arXiv either before or after the acceptance notification. We observe that papers submitted to arXiv before acceptance have, on average, 65% more citations in the following year compared to papers submitted after. We note that this finding is not causal, and discuss possible next steps.
86 - Chao Min , Jiawei Xu , Tao Han 2021
Scientometrics studies have extended from direct citations to high-order citations, as simple citation count is found to tell only part of the story regarding scientific impact. This extension is deemed to be beneficial in scenarios like research eva luation, science history modeling, and information retrieval. In contrast to citations of citations (forward citation generations), references of references (backward citation generations) as another side of high-order citations, is relatively less explored. We adopt a series of metrics for measuring the unfolding of backward citations of a focal paper, tracing back to its knowledge ancestors generation by generation. Two sub-fields in Physics are subject to such analysis on a large-scale citation network. Preliminary results show that (1) most papers in our dataset can be traced to their knowledge ancestry; (2) the size distribution of backward citation generations presents a decreasing-and-then-increasing shape; and (3) citations more than one generation away are still relevant to the focal paper, from either a forward or backward perspective; yet, backward citation generations are higher in topic relevance to the paper of interest. Furthermore, the backward citation generations shed lights for literature recommendation, science evaluation, and sociology of science studies.
Many studies in information science have looked at the growth of science. In this study, we re-examine the question of the growth of science. To do this we (i) use current data up to publication year 2012 and (ii) analyse it across all disciplines an d also separately for the natural sciences and for the medical and health sciences. Furthermore, the data are analysed with an advanced statistical technique - segmented regression analysis - which can identify specific segments with similar growth rates in the history of science. The study is based on two different sets of bibliometric data: (1) The number of publications held as source items in the Web of Science (WoS, Thomson Reuters) per publication year and (2) the number of cited references in the publications of the source items per cited reference year. We have looked at the rate at which science has grown since the mid-1600s. In our analysis of cited references we identified three growth phases in the development of science, which each led to growth rates tripling in comparison with the previous phase: from less than 1% up to the middle of the 18th century, to 2 to 3% up to the period between the two world wars and 8 to 9% to 2012.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا