ترغب بنشر مسار تعليمي؟ اضغط هنا

Demonstration of Ramsey-Comb Precision Spectroscopy in Xenon at Vacuum Ultraviolet Wavelengths Produced with High-Harmonic Generation

100   0   0.0 ( 0 )
 نشر من قبل Laura Dreissen
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The remarkable progress in the field of laser spectroscopy induced by the invention of the frequency-comb laser has enabled many new high-precision tests of fundamental theory and searches for new physics. Extending frequency-comb based spectroscopy techniques to the vacuum (VUV) and extreme ultraviolet (XUV) spectral range would enable measurements in e.g. heavier hydrogen-like systems and open up new possibilities for tests of quantum electrodynamics and measurements of fundamental constants. The main approaches rely on high-harmonic generation (HHG), which is known to induce spurious phase shifts from plasma formation. After our initial report (Physical Review Letters 123, 143001 (2019)), we give a detailed account of how the Ramsey-comb technique is used to probe the plasma dynamics with high precision, and enables accurate spectroscopy in the VUV. A series of Ramsey fringes is recorded to track the phase evolution of a superposition state in xenon atoms, excited by two up-converted frequency-comb pulses. Phase shifts of up to 1 rad induced by HHG were observed at ns timescales and with mrad-level accuracy at $110$ nm. Such phase shifts could be reduced to a negligible level, enabling us to measure the $5p^6 rightarrow 5p^5 8s~^2[3/2]_1$ transition frequency in $^{132}Xe$ at 110 nm (seventh harmonic) with sub-MHz accuracy. The obtained value is $10^4$ times more precise than the previous determination and the fractional accuracy of $2.3 times 10^{-10}$ is $3.6$ times better than the previous best spectroscopic measurement using HHG. The isotope shifts between $^{132}Xe$ and two other isotopes were determined with an accuracy of $420$ kHz. The method can be readily extended to achieve kHz-level accuracy, e.g. to measure the $1S-2S$ transition in $He^+$. Therefore, the Ramsey-comb method shows great promise for high-precision spectroscopy of targets requiring VUV and XUV wavelengths.

قيم البحث

اقرأ أيضاً

VUV radiation around 159 nm is obtained toward direct excitation of a single trapped $^{115}$In$^{+}$ ion. An efficient fluoride-based VUV output-coupler is employed for intracavity high-harmonic generation of a Ti:S oscillator. Using this coupler, w here we measured its reflectance to be about 90%, an average power reaching $6.4,mu$W is coupled out from a modest fundamental power of 650 mW. When a single comb component out of $1.9times10^{5}$ teeth is resonant to the atomic transition, hundreds of fluorescence photons per second will be detectable under a realistic condition.
Resonant enhancement of high harmonic generation can be obtained in plasmas containing ions with strong radiative transitions resonant with harmonic orders. The mechanism for this enhancement is still debated. We perform the first temporal characteri zation of the attosecond emission from a tin plasma under near-resonant conditions for two different resonance detunings. We show that the resonance considerably changes the relative phase of neighbouring harmonics. For very small detunings, their phase locking may even be lost, evidencing strong phase distortions in the emission process and a modified attosecond structure. These features are well reproduced by our simulations, allowing their interpretation in terms of the phase of the recombination dipole moment.
118 - P. Lv , G.F. Cao , L.J. Wen 2019
Characterization of the vacuum ultraviolet (VUV) reflectance of silicon photomultipliers (SiPMs) is important for large-scale SiPM-based photodetector systems. We report the angular dependence of the specular reflectance in a vacuum of SiPMs manufact ured by Fondazionc Bruno Kessler (FBK) and Hamamatsu Photonics K.K. (HPK) over wavelengths ranging from 120 nm to 280 nm. Refractive index and extinction coefficient of the thin silicon-dioxide film deposited on the surface of the FBK SiPMs are derived from reflectance data of a FBK silicon wafer with the same deposited oxide film as SiPMs. The diffuse reflectance of SiPMs is also measured at 193 nm. We use the VUV spectral dependence of the optical constants to predict the reflectance of the FBK silicon wafer and FBK SiPMs in liquid xenon.
We demonstrate a new scheme of spectromicroscopy in the extreme ultraviolet (EUV) spectral range, where the spectral response of the sample at different wavelengths is imaged simultaneously. It is enabled by applying ptychographical information multi plexing (PIM) to a tabletop EUV source based on high harmonic generation, where four spectrally narrow harmonics near 30 nm form a spectral comb structure. Extending PIM from previously demonstrated visible wavelengths to the EUV/X-ray wavelengths promises much higher spatial resolution and more powerful spectral contrast mechanism, making PIM an attractive spectromicroscopy method in both the microscopy and the spectroscopy aspects. Besides the sample, the multicolor EUV beam is also imaged in situ, making our method a powerful beam characterization technique. No hardware is used to separate or narrow down the wavelengths, leading to efficient use of the EUV radiation.
98 - R. Santagata 2019
There is an increasing demand for precise molecular spectroscopy, in particular in the mid-infrared fingerprint window that hosts a considerable number of vibrational signatures, whether it be for modeling our atmosphere, interpreting astrophysical s pectra or testing fundamental physics. We present a high-resolution mid-infrared spectrometer traceable to primary frequency standards. It combines a widely tunable ultra-narrow Quantum Cascade Laser (QCL), an optical frequency comb and a compact multipass cell. The QCL frequency is stabilized onto a comb controlled with a remote near-infrared ultra-stable laser, transferred through a fiber link. The resulting QCL frequency stability is below 10-15 from 0.1 to 10s and its frequency uncertainty of 4x10-14 is given by the remote frequency standards. Continuous tuning over ~400 MHz is reported. We use the apparatus to perform saturated absorption spectroscopy of methanol in the low-pressure multipass cell and demonstrate a statistical uncertainty at the kHz level on transition center frequencies, confirming its potential for driving the next generation technology required for precise spectroscopic measurements.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا