ترغب بنشر مسار تعليمي؟ اضغط هنا

Light-emission from ion-implanted group-IV nanostructures

67   0   0.0 ( 0 )
 نشر من قبل Moritz Brehm
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Moritz Brehm




اسأل ChatGPT حول البحث

Silicon photonics is destined to revolutionize technological areas, such as short-distance data transfer and sensing applications by combining the benefits of integrated optics with the assertiveness of silicon-based microelectronics. However, the lack of practical and low-cost silicon-based monolithic light sources such as light-emitting diodes and, in particular, lasers is the main bottleneck for silicon photonics to become the key technology of the 21st century. After briefly reviewing the state of the art regarding silicon-based light-emitters, we discuss the challenges and benefits of a highly flexible approach: The epitaxial incorporation of group-IV nanostructures into crystalline silicon. We argue that a paradigm change for group-IV quantum dots (QDs) can be achieved by the intentional incorporation of extended point defects inside the QDs upon low energy ion implantation. The superior light-emission properties from such defect-enhanced quantum dots (DEQDs), our present understanding of their structural formation and light-emission mechanisms will be discussed. We will show that useful electrically-driven devices, such as light-emitting diodes (LEDs) can be fabricated employing optically active DEQD-material. These LEDs exhibit exceptional temperature-stability of their light emission properties even up to 100{deg}C, unprecedented for purely group-IV-based optoelectronic devices. Thereafter, we will assess the superior temperature stability of the structural properties of DEQDs upon thermal annealing, the scalability of the light-emission with the DEQD density and passivation schemes to further improve the optical properties. The chapter ends with a discussion of future research directions that will spark the development of this exciting field even further.

قيم البحث

اقرأ أيضاً

330 - V. Reboud , D. Buca , H. Sigg 2020
Silicon photonics in the near-Infra-Red, up to 1.6 um, is already one of key technologies in optical data communications, particularly short-range. It is also being prospected for applications in quantum computing, artificial intelligence, optical si gnal processing, where complex photonic integration is to be combined with large-volume fabrication. However, silicon photonics does not yet cover a large portion of applications in the mid-IR. In the 2 to 5 um wavelength range, environmental sensing, life sensing, and security all rely on optical signatures of molecular vibrations to identify complex individual chemical species. The markets for such analysis are huge and constantly growing, with a push for sensitivity, specificity, compactness, low-power operation and low cost. An all-group-IV, CMOS-compatible mid-IR integrated photonic platform would be a key enabler in this wavelength range. As for other wavelengths, such a platform should be complete with low-loss guided interconnects, detectors, modulators, eventually, and most importantly efficient and integrated light sources. This chapter reviews recent developments in the fields of mid-IR silicon-compatible optically and electrically pumped lasers, light emitting diodes and photodetectors based on Ge, GeSn and SiGeSn alloys. It contains insights into the fundamentals of these developments, including band structure modelling, material growth and processing techniques.
We demonstrate the feasibility of fabricating light-waveguiding microstructures in bulk single-crystal diamond by means of direct ion implantation with a scanning microbeam, resulting in the modulation of the refractive index of the ion-beam damaged crystal. Direct evidence of waveguiding through such buried microchannels is obtained with a phase-shift micro-interferometric method allowing the study of the multi-modal structure of the propagating electromagnetic field. The possibility of defining optical and photonic structures by direct ion writing opens a range of new possibilities in the design of quantum-optical devices in bulk single crystal diamond.
Silicon-based light sources including light-emitting diodes (LEDs) and laser diodes (LDs) for information transmission are urgently needed for developing monolithic integrated silicon photonics. Silicon doped by ion implantation with erbium ions (Er$ ^{3+}$) is considered a promising approach, but suffers from an extremely low quantum efficiency. Here we report an electrically pumped superlinear emission at 1.54 $mu$m from Er/O-doped silicon planar LEDs, which are produced by applying a new deep cooling process. Stimulated emission at room temperature is realized with a low threshold current of ~6 mA (~0.8 A/cm2). Time-resolved photoluminescence and photocurrent results disclose the complex carrier transfer dynamics from the silicon to Er3+ by relaxing electrons from the indirect conduction band of the silicon. This picture differs from the frequently-assumed energy transfer by electron-hole pair recombination of the silicon host. Moreover, the amplified emission from the LEDs is likely due to a quasi-continuous Er/O-related donor band created by the deep cooling technique. This work paves a way for fabricating superluminescent diodes or efficient LDs at communication wavelengths based on rare-earth doped silicon.
In this chapter, we present the state-of-the-art in the generation of nonclassical states of light using semiconductor cavity quantum electrodynamics (QED) platforms. Our focus is on the photon blockade effects that enable the generation of indisting uishable photon streams with high purity and efficiency. Starting with the leading platform of InGaAs quantum dots in optical nanocavities, we review the physics of a single quantum emitter strongly coupled to a cavity. Furthermore, we propose a complete model for photon blockade and tunneling in III-V quantum dot cavity QED systems. Turning toward quantum emitters with small inhomogeneous broadening, we propose a direction for novel experiments for nonclassical light generation based on group-IV color-center systems. We present a model of a multi-emitter cavity QED platform, which features richer dressed-states ladder structures, and show how it can offer opportunities for studying new regimes of high-quality photon blockade.
We present a comprehensive review of recent developments in the field of chiral plasmonics. Significant advances have been made recently in understanding the working principles of chiral plasmonic structures. With advances in micro- and nanofabricati on techniques, a variety of chiral plasmonic nanostructures have been experimentally realized; these tailored chiroptical properties vastly outperform those of their molecular counterparts. We focus on chiral plasmonic nanostructures created using bottom-up approaches, which not only allow for rational design and fabrication but most intriguingly in many cases also enable dynamic manipulation and tuning of chiroptical responses. We first discuss plasmon-induced chirality, resulting from the interaction of chiral molecules with plasmonic excitations. Subsequently, we discuss intrinsically chiral colloids, which give rise to optical chirality owing to their chiral shapes. Finally, we discuss plasmonic chirality, achieved by arranging achiral plasmonic particles into handed configurations on static or active templates. Chiral plasmonic nanostructures are very promising candidates for real-life applications owing to their significantly larger optical chirality than natural molecules. In addition, chiral plasmonic nanostructures offer engineerable and dynamic chiroptical responses, which are formidable to achieve in molecular systems. We thus anticipate that the field of chiral plasmonics will attract further widespread attention in applications ranging from enantioselective analysis to chiral sensing, structural determination, and in situ ultrasensitive detection of multiple disease biomarkers, as well as optical monitoring of transmembrane transport and intracellular metabolism.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا