ﻻ يوجد ملخص باللغة العربية
We study the average skew information-based coherence for both random pure and mixed states. The explicit formulae of the average skew information-based coherence are derived and shown to be the functions of the dimension N of the state space. We demonstrate that as N approaches to infinity, the average coherence is 1 for random pure states, and a positive constant less than 1/2 for random mixed states. We also explore the typicality of average skew information-based coherence of random quantum states. Furthermore, we identify a coherent subspace such that the amount of the skew information-based coherence for each pure state in this subspace can be bounded from below almost always by a fixed number that is arbitrarily close to the typical value of coherence.
We study the skew information-based coherence of quantum states and derive explicit formulas for Werner states and isotropic states in a set of autotensor of mutually unbiased bases (AMUBs). We also give surfaces of skew information-based coherence f
Based on the nonincreasing property of quantum coherence via skew information under incoherent completely positive and trace-preserving maps, we propose a non-Markovianity measure for open quantum processes. As applications, by applying the proposed
Purity and coherence of a quantum state are recognized as useful resources for various information processing tasks. In this article, we propose a fidelity based valid measure of purity and coherence monotone and establish a relationship between them
Prompted by the open questions in Gibilisco [Int. J. Software Informatics, 8(3-4): 265, 2014], in which he introduced a family of measurement-induced quantum uncertainty measures via metric adjusted skew informations, we investigate these measures fu
We present a new uncertainty relation by defining a measure of uncertainty based on skew information. For bipartite systems, we establish uncertainty relations with the existence of a quantum memory. A general relation between quantum correlations and tight bounds of uncertainty has been presented.