ترغب بنشر مسار تعليمي؟ اضغط هنا

Improved parallel WaveGAN vocoder with perceptually weighted spectrogram loss

58   0   0.0 ( 0 )
 نشر من قبل Eunwoo Song
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper proposes a spectral-domain perceptual weighting technique for Parallel WaveGAN-based text-to-speech (TTS) systems. The recently proposed Parallel WaveGAN vocoder successfully generates waveform sequences using a fast non-autoregressive WaveNet model. By employing multi-resolution short-time Fourier transform (MR-STFT) criteria with a generative adversarial network, the light-weight convolutional networks can be effectively trained without any distillation process. To further improve the vocoding performance, we propose the application of frequency-dependent weighting to the MR-STFT loss function. The proposed method penalizes perceptually-sensitive errors in the frequency domain; thus, the model is optimized toward reducing auditory noise in the synthesized speech. Subjective listening test results demonstrate that our proposed method achieves 4.21 and 4.26 TTS mean opinion scores for female and male Korean speakers, respectively.



قيم البحث

اقرأ أيضاً

122 - Mingyang Zhang , Yi Zhou , Li Zhao 2020
This paper presents a novel framework to build a voice conversion (VC) system by learning from a text-to-speech (TTS) synthesis system, that is called TTS-VC transfer learning. We first develop a multi-speaker speech synthesis system with sequence-to -sequence encoder-decoder architecture, where the encoder extracts robust linguistic representations of text, and the decoder, conditioned on target speaker embedding, takes the context vectors and the attention recurrent network cell output to generate target acoustic features. We take advantage of the fact that TTS system maps input text to speaker independent context vectors, and reuse such a mapping to supervise the training of latent representations of an encoder-decoder voice conversion system. In the voice conversion system, the encoder takes speech instead of text as input, while the decoder is functionally similar to TTS decoder. As we condition the decoder on speaker embedding, the system can be trained on non-parallel data for any-to-any voice conversion. During voice conversion training, we present both text and speech to speech synthesis and voice conversion networks respectively. At run-time, the voice conversion network uses its own encoder-decoder architecture. Experiments show that the proposed approach outperforms two competitive voice conversion baselines consistently, namely phonetic posteriorgram and variational autoencoder methods, in terms of speech quality, naturalness, and speaker similarity.
Building cross-lingual voice conversion (VC) systems for multiple speakers and multiple languages has been a challenging task for a long time. This paper describes a parallel non-autoregressive network to achieve bilingual and code-switched voice con version for multiple speakers when there are only mono-lingual corpora for each language. We achieve cross-lingual VC between Mandarin speech with multiple speakers and English speech with multiple speakers by applying bilingual bottleneck features. To boost voice cloning performance, we use an adversarial speaker classifier with a gradient reversal layer to reduce the source speakers information from the output of encoder. Furthermore, in order to improve speaker similarity between reference speech and converted speech, we adopt an embedding consistency loss between the synthesized speech and its natural reference speech in our network. Experimental results show that our proposed method can achieve high quality converted speech with mean opinion score (MOS) around 4. The conversion system performs well in terms of speaker similarity for both in-set speaker conversion and out-set-of one-shot conversion.
Deep neural network with dual-path bi-directional long short-term memory (BiLSTM) block has been proved to be very effective in sequence modeling, especially in speech separation. This work investigates how to extend dual-path BiLSTM to result in a n ew state-of-the-art approach, called TasTas, for multi-talker monaural speech separation (a.k.a cocktail party problem). TasTas introduces two simple but effective improvements, one is an iterative multi-stage refinement scheme, and the other is to correct the speech with imperfect separation through a loss of speaker identity consistency between the separated speech and original speech, to boost the performance of dual-path BiLSTM based networks. TasTas takes the mixed utterance of two speakers and maps it to two separated utterances, where each utterance contains only one speakers voice. Our experiments on the notable benchmark WSJ0-2mix data corpus result in 20.55dB SDR improvement, 20.35dB SI-SDR improvement, 3.69 of PESQ, and 94.86% of ESTOI, which shows that our proposed networks can lead to big performance improvement on the speaker separation task. We have open sourced our re-implementation of the DPRNN-TasNet here (https://github.com/ShiZiqiang/dual-path-RNNs-DPRNNs-based-speech-separation), and our TasTas is realized based on this implementation of DPRNN-TasNet, it is believed that the results in this paper can be reproduced with ease.
In this paper, we propose VoiceID loss, a novel loss function for training a speech enhancement model to improve the robustness of speaker verification. In contrast to the commonly used loss functions for speech enhancement such as the L2 loss, the V oiceID loss is based on the feedback from a speaker verification model to generate a ratio mask. The generated ratio mask is multiplied pointwise with the original spectrogram to filter out unnecessary components for speaker verification. In the experiments, we observed that the enhancement network, after training with the VoiceID loss, is able to ignore a substantial amount of time-frequency bins, such as those dominated by noise, for verification. The resulting model consistently improves the speaker verification system on both clean and noisy conditions.
Recently, the end-to-end approach has been successfully applied to multi-speaker speech separation and recognition in both single-channel and multichannel conditions. However, severe performance degradation is still observed in the reverberant and no isy scenarios, and there is still a large performance gap between anechoic and reverberant conditions. In this work, we focus on the multichannel multi-speaker reverberant condition, and propose to extend our previous framework for end-to-end dereverberation, beamforming, and speech recognition with improved numerical stability and advanced frontend subnetworks including voice activity detection like masks. The techniques significantly stabilize the end-to-end training process. The experiments on the spatialized wsj1-2mix corpus show that the proposed system achieves about 35% WER relative reduction compared to our conventional multi-channel E2E ASR system, and also obtains decent speech dereverberation and separation performance (SDR=12.5 dB) in the reverberant multi-speaker condition while trained only with the ASR criterion.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا