ترغب بنشر مسار تعليمي؟ اضغط هنا

Two years of pulsar observations with the Ultra-Wideband Receiver on the Parkes radio telescope

108   0   0.0 ( 0 )
 نشر من قبل Simon Johnston
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The major programme for observing young, non-recycled pulsars with the Parkes telescope has transitioned from a narrow-band system to an ultra-wideband system capable of observing between 704 and 4032 MHz. We report here on the initial two years of observations with this receiver. Results include dispersion measure (DM) and Faraday rotation measure (RM) variability with time, determined with higher precision than hitherto, flux density measurements and the discovery of several nulling and mode changing pulsars. PSR J1703-4851 is shown to be one of a small subclass of pulsars that has a weak and a strong mode which alternate rapidly in time. PSR J1114-6100 has the fourth highest |RM| of any known pulsar despite its location far from the Galactic Centre. PSR J1825-1446 shows variations in both DM and RM likely due to its motion behind a foreground supernova remnant.

قيم البحث

اقرأ أيضاً

86 - C. Sobey , S. Johnston , S. Dai 2021
We present high signal-to-noise, full polarization pulse profiles for 40 bright, slowly-rotating (non-recycled) pulsars using the new Ultra-Wideband Low-frequency (UWL; 704-4032 MHz) receiver on the Parkes radio telescope. We obtain updated and accur ate interstellar medium parameters towards these pulsars (dispersion measures and Faraday rotation measures), and reveal Faraday dispersion towards PSR J1721-3532 caused by interstellar scattering. We find general trends in the pulse profiles including decreasing fractional linear polarization and increasing degree of circular polarization with increasing frequency, consistent with previous studies, while also revealing new features and frequency evolution. This demonstrates results that can be obtained using UWL monitoring observations of slow pulsars, which are valuable for improving our understanding of pulsar emission and the intervening interstellar medium. The calibrated data products are publicly available.
Magnetars have been proposed to be the origin of FRBs soon after its initial discovery. The detection of the first Galactic FRB 20200428 from SGR 1935+2154 has made this hypothesis more convincing. In October 2020, this source was supposed to be in a n extremely active state again. We then carried out a 1.6-hours follow-up observation of SGR 1935+2154 using the new ultra-wideband low (UWL) receiver of the Parkes 64,m radio telescope covering a frequency range of 704$-$4032 MHz. However, no convincing signal was detected in either of our single pulse or periodicity searches. We obtained a limit on the flux density of periodic signal of $rm 3.6,mu Jy$ using the full 3.3GHz bandwidth data sets, which is the strictest limit for that of SGR 1935+2154. Our full bandwidth limit on the single pulses fluence is 35mJy ms, which is well below the brightest single pulses detected by the FAST radio telescope just two before our observation. Assuming that SGR 1935+2154 is active during our observation, our results suggest that its radio bursts are either intrinsically narrowband or show a steep spectrum.
We report a limit on the ultra-high-energy neutrino flux based on a non-detection of radio pulses from neutrino-initiated particle cascades in the Moon, in observations with the Parkes radio telescope undertaken as part of the LUNASKA project. Due to the improved sensitivity of these observations, which had an effective duration of 127 hours and a frequency range of 1.2-1.5 GHz, this limit extends to lower neutrino energies than those from previous lunar radio experiments, with a detection threshold below 10^20 eV. The calculation of our limit allows for the possibility of lunar-origin pulses being misidentified as local radio interference, and includes the effect of small-scale lunar surface roughness. The targeting strategy of the observations also allows us to place a directional limit on the neutrino flux from the nearby radio galaxy Centaurus A.
We describe an ultra-wide-bandwidth, low-frequency receiver (UWL) recently installed on the Parkes radio telescope. The receiver system provides continuous frequency coverage from 704 to 4032 MHz. For much of the band (~60%) the system temperature is approximately 22K and the receiver system remains in a linear regime even in the presence of strong mobile phone transmissions. We discuss the scientific and technical aspects of the new receiver including its astronomical objectives, as well as the feed, receiver, digitiser and signal-processor design. We describe the pipeline routines that form the archive-ready data products and how those data files can be accessed from the archives. The system performance is quantified including the system noise and linearity, beam shape, antenna efficiency, polarisation calibration and timing stability.
The Askaryan Radio Array (ARA) is an ultra-high energy (UHE, $>10^{17}$ eV) neutrino detector designed to observe neutrinos by searching for the radio waves emitted by the relativistic products of neutrino-nucleon interactions in Antarctic ice. In th is paper, we present constraints on the diffuse flux of ultra-high energy neutrinos between $10^{16}-10^{21}$ eV resulting from a search for neutrinos in two complementary analyses, both analyzing four years of data (2013-2016) from the two deep stations (A2, A3) operating at that time. We place a 90 % CL upper limit on the diffuse all flavor neutrino flux at $10^{18}$ eV of $EF(E)=5.6times10^{-16}$ $textrm{cm}^{-2}$$textrm{s}^{-1}$$textrm{sr}^{-1}$. This analysis includes four times the exposure of the previous ARA result, and represents approximately 1/5 the exposure expected from operating ARA until the end of 2022.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا