ﻻ يوجد ملخص باللغة العربية
We study the $K^*$ meson dissociation in heavy ion collisions during the hadron gas phase. We use the production and absorption cross sections of the $K^*$ and $K$ mesons in a hadron gas, which were calculated in a previous work. We compute the time evolution of the $K^*$ abundance and the $K^* /K$ ratio during the hadron gas phase. Assuming a Bjorken type cooling and using an empirical relation between the freeze-out temperature and the central multiplicity density, we are able to write $K^* /K$ as a function of ($ dN /d eta (eta =0)$). The obtained function is in very good agreement with recent experimental data.
We study the strange vector meson ($K^*, bar K^*$) dynamics in relativistic heavy-ion collisions based on the microscopic Parton-Hadron-String Dynamics (PHSD) transport approach which incorporates partonic and hadronic degrees-of-freedom, a phase tra
The production and the propagation of K+ and of K- mesons in heavy-ion collisions at beam energies of 1 to 2 AGeV have systematically been investigated with the Kaon Spectrometer KaoS at the SIS at the GSI. The ratio of the K+ production excitation f
We study the $K^*$ meson reduction in heavy ion collisions by focusing on the hadronic effects on the $K^*$ meson abundance. We evaluate the absorption cross sections of the $K^*$ and $K$ meson by light mesons in the hadronic matter, and further inve
The shapes of invariant differential cross section for charged particle production as function of transverse momentum measured in heavy-ion collisions are analyzed. The data measured at RHIC and LHC are treated as function of energy density according
The previously developed technique for evaluation of charge-transfer and electron-excitation processes in low-energy heavy-ion collisions [I.I. Tupitsyn et al., Phys. Rev. A 82, 042701(2010)] is extended to collisions of ions with neutral atoms. The