ترغب بنشر مسار تعليمي؟ اضغط هنا

Understanding the $K^*/K$ ratio in heavy ion collisions

58   0   0.0 ( 0 )
 نشر من قبل Fernando Navarra
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the $K^*$ meson dissociation in heavy ion collisions during the hadron gas phase. We use the production and absorption cross sections of the $K^*$ and $K$ mesons in a hadron gas, which were calculated in a previous work. We compute the time evolution of the $K^*$ abundance and the $K^* /K$ ratio during the hadron gas phase. Assuming a Bjorken type cooling and using an empirical relation between the freeze-out temperature and the central multiplicity density, we are able to write $K^* /K$ as a function of ($ dN /d eta (eta =0)$). The obtained function is in very good agreement with recent experimental data.



قيم البحث

اقرأ أيضاً

We study the strange vector meson ($K^*, bar K^*$) dynamics in relativistic heavy-ion collisions based on the microscopic Parton-Hadron-String Dynamics (PHSD) transport approach which incorporates partonic and hadronic degrees-of-freedom, a phase tra nsition from hadronic to partonic matter - Quark-Gluon-Plasma (QGP) - and a dynamical hadronization of quarks and antiquarks as well as final hadronic interactions. We investigate the role of in-medium effects on the $K^*, bar K^*$ meson dynamics by employing Breit-Wigner spectral functions for the $K^*$s with self-energies obtained from a self-consistent coupled-channel G-matrix approach. Furthermore, we confront the PHSD calculations with experimental data for p+p, Cu+Cu and Au+Au collisions at energies up to $sqrt{{s}_{NN}} = 200$~GeV. Our analysis shows that at relativistic energies most of the final $K^*$s (observed experimentally) are produced during the late hadronic phase, dominantly by the $K+ pi to K^*$ channel, such that the fraction of the $K^*$s from the QGP is small and can hardly be reconstructed from the final observables. The influence of the in-medium effects on the $K^*$ dynamics at RHIC energies is rather modest due to their dominant production at low baryon densities (but high meson densities), however, it increases with decreasing beam energy. Moreover, we find that the additional cut on the invariant mass region of the $K^*$ further influences the shape and the height of the final spectra. This imposes severe constraints on the interpretation of the experimental results.
116 - A. Foerster 2003
The production and the propagation of K+ and of K- mesons in heavy-ion collisions at beam energies of 1 to 2 AGeV have systematically been investigated with the Kaon Spectrometer KaoS at the SIS at the GSI. The ratio of the K+ production excitation f unction for Au+Au and for C+C reactions increases with decreasing beam energy, which is expected for a soft nuclear equation-of-state. At 1.5 AGeV a comprehensive study of the K+ and of the K- emission as a function of the size of the collision system, of the collision centrality, of the kaon energy, and of the polar emission angle has been performed. The K-/K+ ratio is found to be nearly constant as a function of the collision centrality. The spectral slopes and the polar emission patterns are different for K- and for K+. These observations indicate that K+ mesons decouple earlier from the reaction zone than K- mesons.
We study the $K^*$ meson reduction in heavy ion collisions by focusing on the hadronic effects on the $K^*$ meson abundance. We evaluate the absorption cross sections of the $K^*$ and $K$ meson by light mesons in the hadronic matter, and further inve stigate the variation in the meson abundances for both particles during the hadronic stage of heavy ion collisions. We show how the interplay between the interaction of the $K^*$ meson and kaon with light mesons in the hadronic medium determines the final yield difference of the statistical hadronization model to the experimental measurements. For the central Au+Au collision at $sqrt{s_{NN}}=200$ GeV, we find that the $K^*/K$ yield ratio at chemical freeze-out decreases by $36%$ during the expansion of the hadronic matter, resulting in the final ratio comparable to STAR measurements of 0.23 $pm0.05$.
The shapes of invariant differential cross section for charged particle production as function of transverse momentum measured in heavy-ion collisions are analyzed. The data measured at RHIC and LHC are treated as function of energy density according to a recent theoretical approach. The Boltzmann-like statistical distribution is extracted from the whole statistical ensemble of produced hadrons using the introduced model. Variation of the temperature, characterizing this exponential distribution, is studied as function of energy density.
The previously developed technique for evaluation of charge-transfer and electron-excitation processes in low-energy heavy-ion collisions [I.I. Tupitsyn et al., Phys. Rev. A 82, 042701(2010)] is extended to collisions of ions with neutral atoms. The method employs the active electron approximation, in which only the active electron participates in the charge transfer and excitation processes while the passive electrons provide the screening DFT potential. The time-dependent Dirac wave function of the active electron is represented as a linear combination of atomic-like Dirac-Fock-Sturm orbitals, localized at the ions (atoms). The screening DFT potential is calculated using the overlapping densities of each ions (atoms), derived from the atomic orbitals of the passive electrons. The atomic orbitals are generated by solving numerically the one-center Dirac-Fock and Dirac-Fock-Sturm equations by means of a finite-difference approach with the potential taken as the sum of the exact reference ion (atom) Dirac-Fock potential and of the Coulomb potential from the other ion within the monopole approximation. The method developed is used to calculate the K-K charge transfer and K-vacancy production probabilties for the Ne$(1s^2 2s^2 2p^6)$ -- F$^{8+}(1s)$ collisions at the F$^{8+}(1s)$ projectile energies 130 keV/u and 230 keV/u. The obtained results are compared with experimental data and other theoretical calculations. The K-K charge transfer and K-vacancy production probabilities are also calculated for the Xe -- Xe$^{53+}(1s)$ collision.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا