ترغب بنشر مسار تعليمي؟ اضغط هنا

Tiny Transducer: A Highly-efficient Speech Recognition Model on Edge Devices

167   0   0.0 ( 0 )
 نشر من قبل Yuekai Zhang
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper proposes an extremely lightweight phone-based transducer model with a tiny decoding graph on edge devices. First, a phone synchronous decoding (PSD) algorithm based on blank label skipping is first used to speed up the transducer decoding process. Then, to decrease the deletion errors introduced by the high blank score, a blank label deweighting approach is proposed. To reduce parameters and computation, deep feedforward sequential memory network (DFSMN) layers are used in the transducer encoder, and a CNN-based stateless predictor is adopted. SVD technology compresses the model further. WFST-based decoding graph takes the context-independent (CI) phone posteriors as input and allows us to flexibly bias user-specific information. Finally, with only 0.9M parameters after SVD, our system could give a relative 9.1% - 20.5% improvement compared with a bigger conventional hybrid system on edge devices.



قيم البحث

اقرأ أيضاً

Self-attention models have been successfully applied in end-to-end speech recognition systems, which greatly improve the performance of recognition accuracy. However, such attention-based models cannot be used in online speech recognition, because th ese models usually have to utilize a whole acoustic sequences as inputs. A common method is restricting the field of attention sights by a fixed left and right window, which makes the computation costs manageable yet also introduces performance degradation. In this paper, we propose Memory-Self-Attention (MSA), which adds history information into the Restricted-Self-Attention unit. MSA only needs localtime features as inputs, and efficiently models long temporal contexts by attending memory states. Meanwhile, recurrent neural network transducer (RNN-T) has proved to be a great approach for online ASR tasks, because the alignments of RNN-T are local and monotonic. We propose a novel network structure, called Memory-Self-Attention (MSA) Transducer. Both encoder and decoder of the MSA Transducer contain the proposed MSA unit. The experiments demonstrate that our proposed models improve WER results than Restricted-Self-Attention models by $13.5 on WSJ and $7.1 on SWBD datasets relatively, and without much computation costs increase.
Multi-channel inputs offer several advantages over single-channel, to improve the robustness of on-device speech recognition systems. Recent work on multi-channel transformer, has proposed a way to incorporate such inputs into end-to-end ASR for impr oved accuracy. However, this approach is characterized by a high computational complexity, which prevents it from being deployed in on-device systems. In this paper, we present a novel speech recognition model, Multi-Channel Transformer Transducer (MCTT), which features end-to-end multi-channel training, low computation cost, and low latency so that it is suitable for streaming decoding in on-device speech recognition. In a far-field in-house dataset, our MCTT outperforms stagewise multi-channel models with transformer-transducer up to 6.01% relative WER improvement (WERR). In addition, MCTT outperforms the multi-channel transformer up to 11.62% WERR, and is 15.8 times faster in terms of inference speed. We further show that we can improve the computational cost of MCTT by constraining the future and previous context in attention computations.
We investigate a set of techniques for RNN Transducers (RNN-Ts) that were instrumental in lowering the word error rate on three different tasks (Switchboard 300 hours, conversational Spanish 780 hours and conversational Italian 900 hours). The techni ques pertain to architectural changes, speaker adaptation, language model fusion, model combination and general training recipe. First, we introduce a novel multiplicative integration of the encoder and prediction network vectors in the joint network (as opposed to additive). Second, we discuss the applicability of i-vector speaker adaptation to RNN-Ts in conjunction with data perturbation. Third, we explore the effectiveness of the recently proposed density ratio language model fusion for these tasks. Last but not least, we describe the other components of our training recipe and their effect on recognition performance. We report a 5.9% and 12.5% word error rate on the Switchboard and CallHome test sets of the NIST Hub5 2000 evaluation and a 12.7% WER on the Mozilla CommonVoice Italian test set.
Knowledge Distillation is an effective method of transferring knowledge from a large model to a smaller model. Distillation can be viewed as a type of model compression, and has played an important role for on-device ASR applications. In this paper, we develop a distillation method for RNN-Transducer (RNN-T) models, a popular end-to-end neural network architecture for streaming speech recognition. Our proposed distillation loss is simple and efficient, and uses only the y and blank posterior probabilities from the RNN-T output probability lattice. We study the effectiveness of the proposed approach in improving the accuracy of sparse RNN-T models obtained by gradually pruning a larger uncompressed model, which also serves as the teacher during distillation. With distillation of 60% and 90% sparse multi-domain RNN-T models, we obtain WER reductions of 4.3% and 12.1% respectively, on a noisy FarField eval set. We also present results of experiments on LibriSpeech, where the introduction of the distillation loss yields a 4.8% relative WER reduction on the test-other dataset for a small Conformer model.
In this paper, we explore several new schemes to train a seq2seq model to integrate a pre-trained LM. Our proposed fusion methods focus on the memory cell state and the hidden state in the seq2seq decoder long short-term memory (LSTM), and the memory cell state is updated by the LM unlike the prior studies. This means the memory retained by the main seq2seq would be adjusted by the external LM. These fusion methods have several variants depending on the architecture of this memory cell update and the use of memory cell and hidden states which directly affects the final label inference. We performed the experiments to show the effectiveness of the proposed methods in a mono-lingual ASR setup on the Librispeech corpus and in a transfer learning setup from a multilingual ASR (MLASR) base model to a low-resourced language. In Librispeech, our best model improved WER by 3.7%, 2.4% for test clean, test other relatively to the shallow fusion baseline, with multi-level decoding. In transfer learning from an MLASR base model to the IARPA Babel Swahili model, the best scheme improved the transferred model on eval set by 9.9%, 9.8% in CER, WER relatively to the 2-stage transfer baseline.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا