ﻻ يوجد ملخص باللغة العربية
We obtain non-trivial solutions to the heterotic $rm{G}_2$ system, which are defined on the total spaces of non-trivial circle bundles over Calabi--Yau $3$-orbifolds. By adjusting the $S^1$ fibres in proportion to a power of the string constant $alpha$, we obtain a cocalibrated $rm{G}_2$-structure the torsion of which realises an arbitrary constant (trivial) dilaton field and an $H$-flux with nontrivial Chern--Simons defect. We find examples of connections on the tangent bundle and a non-flat $rm{G}_2$-instanton induced from the horizontal Calabi--Yau metric which satisfy together the anomaly-free condition, also known as the heterotic Bianchi identity. The connections on the tangent bundle are $rm{G}_2$-instantons up to higher order corrections in $alpha$.
We construct balanced metrics on the family of non-Kahler Calabi-Yau threefolds that are obtained by smoothing after contracting $(-1,-1)$-rational curves on Kahler Calabi-Yau threefold. As an application, we construct balanced metrics on complex man
In this note we initiate a program to obtain global descriptions of Calabi-Yau moduli spaces, to calculate their Picard group, and to identify within that group the Hodge line bundle, and the closely-related Bagger-Witten line bundle. We do this here
We prove that the categorical entropy of the autoequivalence $T_{mathcal{O}}circ(-otimesmathcal{O}(-1))$ on a Calabi-Yau manifold is the unique positive real number $lambda$ satisfying $$ sum_{kgeq 1}frac{chi(mathcal{O}(k))}{e^{klambda}}=e^{(d-1)t}.
We formulate a Calabi-Yau type conjecture in generalized Kahler geometry, focusing on the case of nondegenerate Poisson structure. After defining natural Hamiltonian deformation spaces for generalized Kahler structures generalizing the notion of Kahl
In this paper we study Higgs and co-Higgs $G$-bundles on compact Kahler manifolds $X$. Our main results are: (1) If $X$ is Calabi-Yau, and $(E,,theta)$ is a semistable Higgs or co-Higgs $G$-bundle on $X$, then the principal $G$-bundle $E$ is semistab