ترغب بنشر مسار تعليمي؟ اضغط هنا

Whistler wave occurrence and the interaction with strahl electrons during the first encounter of Parker Solar Probe

159   0   0.0 ( 0 )
 نشر من قبل Vamsee Krishna Jagarlamudi
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We studied the properties and occurrence of narrow band whistler waves and their interaction with strahl electrons observed between 0.17 and 0.26 au during the first encounter of Parker Solar Probe. We observe that occurrence of whistler waves is low, nearly 1.5% and less than 0.5% in the analyzed peak and average BPF data respectively. Whistlers occur highly intermittently and 80% of the whistlers appear continuously for less than 3 s. Occurrence rate of whistler waves was found to be anti-correlated with the solar wind bulk velocity. The study of the duration of the whistler intervals revealed an anti-correlation between the duration and the solar wind velocity, as well as between the duration and the normalized amplitude of magnetic field variations. The pitch-angle widths (PAWs) of the field-aligned electron population referred to as the strahl are broader by at least 12 degrees during the presence of large amplitude narrow band whistler waves. This observation points towards a EM wave electron interaction, resulting in pitch-angle scattering. PAW of strahl electrons corresponding to the short duration whistlers are higher compared to the long duration whistlers. Parallel cuts through the strahl electron velocity distribution function (VDF) observed during the whistler intervals appear to depart from the Maxwellian shape typically found in the near-Sun strahl VDFs (Bercic et al. 2020). The relative decrease of parallel electron temperature and the increase of PAW for the electrons in strahl energy range suggests that the interaction with whistler waves results in a transfer of electron momentum from the parallel to the perpendicular direction.



قيم البحث

اقرأ أيضاً

We examine Alfven Wave Solar atmosphere Model (AWSoM) predictions of the first Parker Solar Probe (PSP) encounter. We focus on the 12-day closest approach centered on the 1st perihelion. AWSoM (van der Holst et al., 2014) allows us to interpret the P SP data in the context of coronal heating via Alfven wave turbulence. The coronal heating and acceleration is addressed via outward-propagating low-frequency Alfven waves that are partially reflected by Alfven speed gradients. The nonlinear interaction of these counter-propagating waves results in a turbulent energy cascade. To apportion the wave dissipation to the electron and anisotropic proton temperatures, we employ the results of the theories of linear wave damping and nonlinear stochastic heating as described by Chandran et al. (2011). We find that during the first encounter, PSP was in close proximity to the heliospheric current sheet (HCS) and in the slow wind. PSP crossed the HCS two times, namely at 2018/11/03 UT 01:02 and 2018/11/08 UT 19:09 with perihelion occuring on the south of side of the HCS. We predict the plasma state along the PSP trajectory, which shows a dominant proton parallel temperature causing the plasma to be firehose unstable.
Observations of plasma waves by the Fields Suite and of electrons by the Solar Wind Electrons Alphas and Protons Investigation (SWEAP) on Parker Solar Probe provide strong evidence for pitch angle scattering of strahl-energy electrons by narrowband w histler-mode waves at radial distances less than ~0.3 AU. We present two example intervals of a few hours that include 8 waveform captures with whistler-mode waves and 26 representative electron distributions that are examined in detail. Two were narrow; 17 were clearly broadened, and 8 were very broad. The two with narrow strahl occurred when there were either no whistlers or very intermittent low amplitude waves. Six of the eight broadest distributions were associated with intense, long duration waves. Approximately half of the observed electron distributions have features consistent with an energy dependent scattering mechanism, as would be expected from interactions with narrowband waves. A comparison of the wave power in the whistler-mode frequency band to pitch angle width and a measure of anisotropy provides additional evidence for the electron scattering by whistler-mode waves. The pitch angle broadening occurs in over an energy range comparable to that obtained for the n=1 (co-streaming) resonance for the observed wave and plasma parameters. The additional observation that the heat flux is lower in the interval with multiple switchbacks may provide clues to the nature of switchbacks. These results provide strong evidence that the heat flux is reduced by narroweband whistler-mode waves scattering of strahl-energy electrons.
Parker Solar Probe (PSP) is providing an unprecedented view of the Suns corona as it progressively dips closer into the solar atmosphere with each solar encounter. Each set of observations provides a unique opportunity to test and constrain global mo dels of the solar corona and inner heliosphere and, in turn, use the model results to provide a global context for interpreting such observations. In this study, we develop a set of global magnetohydrodynamic (MHD) model solutions of varying degrees of sophistication for PSPs first four encounters and compare the results with in situ measurements from PSP, Stereo-A, and Earth-based spacecraft, with the objective of assessing which models perform better or worse. All models were primarily driven by the observed photospheric magnetic field using data from Solar Dynamics Observatorys Helioseismic and Magnetic Imager (HMI) instrument. Overall, we find that there are substantial differences between the model results, both in terms of the large-scale structure of the inner heliosphere during these time periods, as well as in the inferred time-series at various spacecraft. The thermodynamic model, which represents the middle ground, in terms of model complexity, appears to reproduce the observations most closely for all four encounters. Our results also contradict an earlier study that had hinted that the open flux problem may disappear nearer the Sun. Instead, our results suggest that this missing solar flux is still missing even at 26.9 Rs, and thus it cannot be explained by interplanetary processes. Finally, the model results were also used to provide a global context for interpreting the localized in situ measurements.
300 - Daniel Verscharen 2019
We investigate the scattering of strahl electrons by microinstabilities as a mechanism for creating the electron halo in the solar wind. We develop a mathematical framework for the description of electron-driven microinstabilities and discuss the ass ociated physical mechanisms. We find that an instability of the oblique fast-magnetosonic/whistler (FM/W) mode is the best candidate for a microinstability that scatters strahl electrons into the halo. We derive approximate analytic expressions for the FM/W instability threshold in two different $beta_{mathrm c}$ regimes, where $beta_{mathrm c}$ is the ratio of the core electrons thermal pressure to the magnetic pressure, and confirm the accuracy of these thresholds through comparison with numerical solutions to the hot-plasma dispersion relation. We find that the strahl-driven oblique FM/W instability creates copious FM/W waves under low-$beta_{mathrm c}$ conditions when $U_{0mathrm s}gtrsim 3w_{mathrm c}$, where $U_{0mathrm s}$ is the strahl speed and $w_{mathrm c}$ is the thermal speed of the core electrons. These waves have a frequency of about half the local electron gyrofrequency. We also derive an analytic expression for the oblique FM/W instability for $beta_{mathrm c}sim 1$. The comparison of our theoretical results with data from the emph{Wind} spacecraft confirms the relevance of the oblique FM/W instability for the solar wind. The whistler heat-flux, ion-acoustic heat-flux, kinetic-Alfven-wave heat-flux, and electrostatic electron-beam instabilities cannot fulfill the requirements for self-induced scattering of strahl electrons into the halo. We make predictions for the electron strahl close to the Sun, which will be tested by measurements from emph{Parker Solar Probe} and emph{Solar Orbiter}.
Electrostatic analyzers of different designs have been used since the earliest days of the space age, beginning with the very earliest solar wind measurements made by Mariner 2 en route to Venus in 1962. The Parker Solar Probe (PSP) mission, NASAs fi rst dedicated mission to study the innermost reaches of the heliosphere, makes its thermal plasma measurements using a suite of instruments called the Solar Wind Electrons, Alphas, and Protons (SWEAP) investigation. SWEAPs electron Parker Solar Probe Analyzer (SPAN-E) instruments are a pair of top-hat electrostatic analyzers on PSP that are capable of measuring the electron distribution function in the solar wind from 2 eV to 30 keV. For the first time, in-situ measurements of thermal electrons provided by SPAN-E will help reveal the heating and acceleration mechanisms driving the evolution of the solar wind at the points of acceleration and heating, closer than ever before to the Sun. This paper details the design of the SPAN-E sensors and their operation, data formats, and measurement caveats from Parker Solar Probes first two close encounters with the Sun.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا