ترغب بنشر مسار تعليمي؟ اضغط هنا

CO excitation, molecular gas density and interstellar radiation field in local and high-redshift galaxies

131   0   0.0 ( 0 )
 نشر من قبل Daizhong Liu
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the Carbon Monoxide (CO) excitation, mean molecular gas density and interstellar radiation field (ISRF) intensity in a comprehensive sample of 76 galaxies from local to high redshift (z~0-6), selected based on detections of their CO transitions J=2-1 and 5-4 and their optical/infrared/(sub-)millimeter spectral energy distributions (SEDs). We confirm the existence of a tight correlation between CO excitation as traced by the CO(5-4)/(2-1) line ratio (R52), and the mean ISRF intensity U as derived from infrared SED fitting using dust SED templates. By modeling the molecular gas density probability distribution function (PDF) in galaxies and predicting CO line ratios with large velocity gradient radiative transfer calculations, we present a framework linking global CO line ratios to the mean molecular hydrogen gas density nH2 and kinetic temperature Tkin. Mapping in this way observed R52 ratios to nH2 and Tkin probability distributions, we obtain positive U-nH2 and U-Tkin correlations, which imply a scenario in which the ISRF in galaxies is mainly regulated by Tkin and (non-linearly) by nH2. A small fraction of starburst galaxies showing enhanced nH2 could be due to merger-driven compaction. Our work demonstrates that ISRF and CO excitation are tightly coupled, and that density-PDF modeling is a promising tool for probing detailed ISM properties inside galaxies.



قيم البحث

اقرأ أيضاً

Following the first pioneering efforts in the 1990s that have focused on the detection of the molecular interstellar medium in high redshift galaxies, recent years have brought great advances in our understanding of the actual physical properties of the gas that set the conditions for star formation. Observations of the ground-state CO J=1-0 line have furnished crucial information on the total masses of the gas reservoirs, as well as reliable dynamical mass and size estimates. Detailed studies of rotational ladders of CO have provided insight on the temperature and density of the gas. Investigations of the very dense gas associated with actively star-forming regions in the interstellar medium, most prominently through HCN and HCO+, have enabled a better understanding of the nature of the extreme starbursts found in many high-redshift galaxies, which exceed the star formation rates of their most active present-day counterparts by an order of magnitude. Key progress in this area has been made through targeted studies of few, well-selected systems with current facilities. With the completion of the Karl G. Jansky Very Large Array and the Atacama Large (sub)Millimeter Array, it will become possible to develop a more general framework for the interpretation of these investigations based on unbiased studies of normal star-forming galaxies back to the earliest cosmic epochs.
The chemical enrichment in the interstellar medium (ISM) of galaxies is regulated by several physical processes: stellar evolution, grain formation and destruction, galactic inflows and outflows. Understanding such processes is essential to follow th e chemical enrichment of galaxies through the cosmic epochs, and to interpret the observations. Despite the importance of such topics, the efficiency of the different processes driving the evolution of baryons in galaxies, remain controversial. We revise the current description of metal and dust evolution in local low-metallicity dwarf galaxies and we develop a description for Lyman Break Galaxies. Our main goal is to reproduce i) the peak in the mass of dust over the mass of stars (sMdust) observed within few hundred Myrs; ii) the decrease of the sMdust at later time. The spectral energy distribution of the galaxies is fitted with the Code Investigating GALaxies Emission (CIGALE), through which the stellar and dust masses, and the star formation rate are estimated. For some of the dwarf galaxies, the metal and gas content are also available. We run different calculations of chemical evolution in galaxies, and we fit the observed properties through the model predictions. We show that i) a top-heavy initial mass function that favours massive stars and a dust condensation fraction for Type II Supernovae (SNe II) of 50% or more help to reproduce the peak of sMdust observed after 100 Myrs since the beginning of the cycle; ii) galactic outflows play a crucial role in reproducing the decline in sMdust with age, and they are more efficient than grain destruction from SNe II; iii) a star formation efficiency (mass of gas converted into stars) of few per cent is required to explain the metallicity of local dwarf galaxies; iv) dust growth in the ISM is not necessary to reproduce the sMdust and, if present, its effect is erased by galactic outflows.
78 - Tianxing Jiang 2018
We explore the relation between the star formation rate surface density ($Sigma$SFR) and the interstellar gas pressure for nearby compact starburst galaxies. The sample consists of 17 green peas and 19 Lyman break analogs. Green peas are nearby analo gs of Ly$alpha$ emitters at high redshift and Lyman break analogs are nearby analogs of Lyman break galaxies at high redshift. We measure the sizes for green peas using Hubble Space Telescope Cosmic Origins Spectrograph (COS) NUV images with a spatial resolution of $sim$ 0.05$^{}$. We estimate the gas thermal pressure in HII regions by $P = N_{total}Tk{_B} simeq 2n_{e}Tk{_B}$. The electron density is derived using the [SII] doublet at 6716,6731 AA, and the temperature is calculated from the [OIII] lines. The correlation is characterized by $Sigma$ SFR = 2.40$times$10$^{-3,}$M$_{odot,}$yr$^{-1,}$kpc$^{-2}$$left(frac{P/k_{B}}{10^{4}cm^{-3}K}right)^{1.33}$. Green peas and Lyman break analogs have high $Sigma$SFR up to 1.2 M$_{odot,}$yr$^{-1,}$kpc$^{-2}$ and high thermal pressure in HII region up to P/k$_B$ $sim$10$^{7.2}{rm, K, cm}^{-3}$. These values are at the highest end of the range seen in nearby starburst galaxies. The high gas pressure and the correlation, are in agreement with those found in star-forming galaxies at z $sim$ 2.5. These extreme pressures are shown to be responsible for driving galactic winds in nearby starbursts. These outflows may be a crucial in enabling Lyman-$alpha$ and Lyman-continuum to escape.
We derive new self-consistent theoretical UV, optical, and IR diagnostics for the ISM pressure and electron density in the ionized nebulae of star-forming galaxies. Our UV diagnostics utilize the inter-combination, forbidden and resonance lines of si licon, carbon, aluminum, neon, and nitrogen. We also calibrate the optical and IR forbidden lines of oxygen, argon, nitrogen and sulfur. We show that line ratios used as ISM pressure diagnostics depend on the gas-phase metallicity with a residual dependence on the ionization parameter of the gas. In addition, the traditional electron density diagnostic [S II] {lambda}6731/[S II] {lambda}6717 is strongly dependent on the gas-phase metallicity. We show how different emission-line ratios are produced in different ionization zones in our theoretical nebulae. The [S II] and [O II] ratios are produced in different zones, and should not be used interchangeably to measure the electron density of the gas unless the electron temperature is known to be constant. We review the temperature and density distributions observed within H II regions and discuss the implications of these distributions on measuring the electron density of the gas. Many H II regions contain radial variations in density. We suggest that the ISM pressure is a more meaningful quantity to measure in H II regions or galaxies. Specific combinations of line ratios can cover the full range of ISM pressures (4 < log(P/k) < 9). As H II regions become resolved at increasingly high redshift through the next generation telescopes, we anticipate that these diagnostics will be important for understanding the conditions around the young, hot stars from the early universe to the present day.
We study the molecular gas properties of high-$z$ galaxies observed in the ALMA Spectroscopic Survey (ASPECS) that targets a $sim1$ arcmin$^2$ region in the Hubble Ultra Deep Field (UDF), a blind survey of CO emission (tracing molecular gas) in the 3 mm and 1mm bands. Of a total of 1302 galaxies in the field, 56 have spectroscopic redshifts and correspondingly well-defined physical properties. Among these, 11 have infrared luminosities $L_{rm{}IR}>10^{11}$ L$_odot$, i.e. a detection in CO emission was expected. Out these, 7 are detected at various significance in CO, and 4 are undetected in CO emission. In the CO-detected sources, we find CO excitation conditions that are lower than typically found in starburst/SMG/QSO environments. We use the CO luminosities (including limits for non-detections) to derive molecular gas masses. We discuss our findings in context of previous molecular gas observations at high redshift (star-formation law, gas depletion times, gas fractions): The CO-detected galaxies in the UDF tend to reside on the low-$L_{rm{}IR}$ envelope of the scatter in the $L_{rm{}IR}-L_{rm{}CO}$ relation, but exceptions exist. For the CO-detected sources, we find an average depletion time of $sim$ 1 Gyr, with significant scatter. The average molecular-to-stellar mass ratio ($M_{rm{}H2}$/$M_*$) is consistent with earlier measurements of main sequence galaxies at these redshifts, and again shows large variations among sources. In some cases, we also measure dust continuum emission. On average, the dust-based estimates of the molecular gas are a factor $sim$2-5$times$ smaller than those based on CO. Accounting for detections as well as non-detections, we find large diversity in the molecular gas properties of the high-redshift galaxies covered by ASPECS.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا