ﻻ يوجد ملخص باللغة العربية
One of the central issues concerning the mechanism of high temperature superconductivity in cuprates is the nature of the ubiquitous charge order and its implications to superconductivity. Here we use scanning tunneling microscopy to investigate the evolution of charge order from the optimally doped to strongly overdoped Bi2Sr2CuO6+{delta} cuprates. We find that with increasing hole concentration, the long-range checkerboard order gradually evolves into short-range glassy patterns consisting of diluted charge puddles. Each charge puddle has a unidirectional nematic internal structure, and exhibits clear pair density modulations as revealed by the spatial variations of superconducting coherence peak and gap depth. Both the charge puddles and the nematicity vanish completely in the strongly overdoped non-superconducting regime, when another type of short-range order with root2 * root2 periodicity emerges. These results shed important new lights on the intricate interplay between the intertwined orders and the superconducting phase of cuprates.
The evolution of the thermoelectric power S(T) with doping, p, of single-layer Bi2Sr2CuO6+d ceramics in the strongly overdoped region is studied in detail. Analysis in term of drag and diffusion contributions indicates a departure of the diffusion fr
Hall effect and quantum oscillation measurements on high temperature cuprate superconductors show that underdoped compositions have a small Fermi surface pocket whereas when heavily overdoped, the pocket increases dramatically in size. The origin of
We calculate superfluid density for a dirty d-wave superconductor. The effects of impurity scattering are treated within the self-consistent t-matrix approximation, in weak-coupling BCS theory. Working from a realistic tight-binding parameterization
The BaFe2(As1-xPx)2 compounds with x = 0 (parent), x = 0.10 (under-doped), x = 0.31, 0.33, 0.53 (superconductors with Tc = 27.3 K, 27.6 K, 13.9 K, respectively) and x = 0.70, 0.77 (over-doped) have been investigated versus temperature using 57Fe Moss
In underdoped cuprates, the interplay of the pseudogap, superconductivity, and charge and spin ordering can give rise to exotic quantum states, including the pair density wave (PDW), in which the superconducting (SC) order parameter is oscillatory in