ترغب بنشر مسار تعليمي؟ اضغط هنا

Self-interacting Inelastic Dark Matter in the light of XENON1T excess

123   0   0.0 ( 0 )
 نشر من قبل Manoranjan Dutta
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Manoranjan Dutta




اسأل ChatGPT حول البحث

We propose a self-interacting inelastic dark matter (DM) scenario as a possible origin of the recently reported excess of electron recoil events by the XENON1T experiment. Two quasi-degenerate Majorana fermion DM interact within themselves via a light hidden sector massive gauge boson and with the standard model particles via gauge kinetic mixing. We also consider an additional long-lived singlet scalar which helps in realising correct dark matter relic abundance via a hybrid setup comprising of both freeze-in and freeze-out mechanisms. While being consistent with the required DM phenomenology along with sufficient self-interactions to address the small scale issues of cold dark matter, the model with GeV scale DM can explain the XENON1T excess via inelastic down scattering of heavier DM component into the lighter one. All these requirements leave a very tiny parameter space keeping the model very predictive for near future experiments.



قيم البحث

اقرأ أيضاً

90 - Debasish Borah 2021
We propose a self-interacting boosted dark matter (DM) scenario as a possible origin of the recently reported excess of electron recoil events by the XENON1T experiment. The Standard Model has been extended with two vector-like fermion singlets charg ed under a dark $U(1)_D$ gauge symmetry to describe the dark sector. While the presence of light vector boson mediator leads to sufficient DM self-interactions to address the small scale issues of cold dark matter, the model with GeV scale DM can explain the XENON1T excess via scattering of boosted DM component with electrons at the detector. The requirement of large annihilation rate of heavier DM into the lighter one for sufficient boosted DM flux leads to suppressed thermal relic abundance. A hybrid setup of thermal and non-thermal contribution from late decay of a scalar can lead to correct relic abundance. All these requirements leave a very tiny parameter space for sub-GeV DM keeping the model very predictive for near future experiments.
Very recently, the Xenon1T collaboration has reported an intriguing electron recoil excess, which may imply for light dark matter. In order to interpret this anomaly, we propose the atmospheric dark matter (ADM) from the inelastic collision of cosmic rays (CRs) with the atmosphere. Due to the boost effect of high energy CRs, we show that the light ADM can be fast-moving and successfully fit the observed electron recoil spectrum through the ADM-electron scattering process. Meanwhile, our ADM predicts the scattering cross section $sigma_e sim {cal O}(10^{-38}- 10^{-39}$) cm$^{2}$, and thus can evade other direct detection constraints. The search for light meson rare decays, such as $eta to pi + slashed E_T$, would provide a complementary probe of our ADM in the future.
The low-energy electronic recoil spectrum in XENON1T provides an intriguing hint for potential new physics. At the same time, observations of horizontal branch stars favor the existence of a small amount of extra cooling compared to the one expected from the Standard Model particle content. In this note, we argue that a hidden photon with a mass of $sim 2.5$ keV and a kinetic mixing of $sim 10^{-15}$ allows for a good fit to both of these excesses. In this scenario, the signal detected in XENON1T is due to the absorption of hidden photon dark matter particles, whereas the anomalous cooling of horizontal branch stars arises from resonant production of hidden photons in the stellar interior.
We show that the electron recoil excess around 2 keV claimed by the Xenon collaboration can be fitted by DM or DM-like particles having a fast component with velocity of order $sim 0.1$. Those particles cannot be part of the cold DM halo of our Galax y, so we speculate about their possible nature and origin, such as fast moving DM sub-haloes, semi-annihilations of DM and relativistic axions produced by a nearby axion star. Feasible new physics scenarios must accommodate exotic DM dynamics and unusual DM properties.
We show that the excess in electron recoil events seen by the XENON1T experiment can be explained by relatively low-mass Luminous Dark Matter candidate. The dark matter scatters inelastically in the detector (or the surrounding rock), to produce a he avier dark state with a ~2.75 keV mass splitting. This heavier state then decays within the detector, producing a peak in the electron recoil spectrum which is a good fit to the observed excess. We comment on the ability of future direct detection datasets to differentiate this model from other Beyond the Standard Model scenarios, and from possible tritium backgrounds, including the use of diurnal modulation, multi-channel signals etc.,~as possible distinguishing features of this scenario.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا