ترغب بنشر مسار تعليمي؟ اضغط هنا

Correlation engineering via non-local dissipation

75   0   0.0 ( 0 )
 نشر من قبل Kushal Seetharam
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Controlling the spread of correlations in quantum many-body systems is a key challenge at the heart of quantum science and technology. Correlations are usually destroyed by dissipation arising from coupling between a system and its environment. Here, we show that dissipation can instead be used to engineer a wide variety of spatio-temporal correlation profiles in an easily tunable manner. We describe how dissipation with any translationally-invariant spatial profile can be realized in cold atoms trapped in an optical cavity. A uniform external field and the choice of spatial profile can be used to design when and how dissipation creates or destroys correlations. We demonstrate this control by preferentially generating entanglement at a desired wavevector. We thus establish non-local dissipation as a new route towards engineering the far-from-equilibrium dynamics of quantum information, with potential applications in quantum metrology, state preparation, and transport.



قيم البحث

اقرأ أيضاً

Dissipation can serve as a powerful resource for controlling the behavior of open quantum systems.Recently there has been a surge of interest in the influence of dissipative coupling on large quantum systems and, more specifically, how these processe s can influence band topology and phenomena like many-body localization. Here, we explore the engineering of local, tunable dissipation in so-called synthetic lattices, arrays of quantum states that are parametrically coupled in a fashion analogous to quantum tunneling. Considering the specific case of momentum-state lattices, we investigate two distinct mechanisms for engineering controlled loss: one relying on an explicit form of dissipation by spontaneous emission, and another relying on reversible coupling to a large reservoir of unoccupied states. We experimentally implement the latter and demonstrate the ability to tune the local loss rate over a large range. The introduction of controlled loss to the synthetic lattice toolbox promises to pave the way for studying the interplay of dissipation with topology, disorder, and interactions.
Coupling electronic and vibrational degrees of freedom of Rydberg atoms held in optical tweezer arrays offers a flexible mechanism for creating and controlling atom-atom interactions. We find that the state-dependent coupling between Rydberg atoms an d local oscillator modes gives rise to two- and three-body interactions which are controllable through the strength of the local confinement. This approach even permits the cancellation of two-body terms such that three-body interactions become dominant. We analyze the structure of these interactions on two-dimensional bipartite lattice geometries and explore the impact of three-body interactions on system ground state on a square lattice. Focusing specifically on a system of $ ^{87} $Rb atoms, we show that the effects of the multi-body interactions can be maximized via a tailored dressed potential within a trapping frequency range of the order of a few hundred kHz and for temperatures corresponding to a $ >90% $ occupation of the atomic vibrational ground state. These parameters, as well as the multi-body induced time scales, are compatible with state-of-the-art arrays of optical tweezers. Our work shows a highly versatile handle for engineering multi-body interactions of quantum many-body systems in most recent manifestations on Rydberg lattice quantum simulators.
This study develops a novel experimental method of deducing the profile of interaction induced between impurities in a trapped gas of ultracold Fermi/Bose atoms, which are often referred to as Fermi/Bose polarons. In this method, we consider a two-bo dy Fermi/Bose polaron collision experiment in which impurities and atoms interact only weakly. Numerical simulations of the quantum dynamics reveal the possibility to obtain information regarding the non-local induced interaction between two polarons from a measured profile of the polaron wave packet at several snapshots. This is because the potential of the induced interaction is well balanced by the quantum potential whenever the WKB approximation for the relevant Schr{o}dinger equation is applicable.
119 - G. Kordas , S. Wimberger , 2013
We introduce a method for the dissipative preparation of strongly correlated quantum states of ultracold atoms in an optical lattice via localized particle loss. The interplay of dissipation and interactions enables different types of dynamics. This ushers a new line of experimental methods to maintain the coherence of a Bose-Einstein condensate or to deterministically generate macroscopically entangled quantum states.
Controlling interactions is the key element for quantum engineering of many-body systems. Using time-periodic driving, a naturally given many-body Hamiltonian of a closed quantum system can be transformed into an effective target Hamiltonian exhibiti ng vastly different dynamics. We demonstrate such Floquet engineering with a system of spins represented by Rydberg states in an ultracold atomic gas. Applying a sequence of spin manipulations, we change the symmetry properties of the effective Heisenberg XYZ Hamiltonian. As a consequence, the relaxation behavior of the total spin is drastically modified. The observed dynamics can be qualitatively captured by a semi-classical simulation. Synthesising a wide range of Hamiltonians opens vast opportunities for implementing quantum simulation of non-equilibrium dynamics in a single experimental setting.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا