ترغب بنشر مسار تعليمي؟ اضغط هنا

Surface effects and turbulent pressure. Assessing the Gas-$Gamma_1$ and Reduced-$Gamma_1$ empirical models

69   0   0.0 ( 0 )
 نشر من قبل Kevin Belkacem
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The use of the full potential of stellar seismology is made difficult by the improper modeling of the upper-most layers of solar-like stars and their influence on the modeled frequencies. Our knowledge on these emph{surface effects} has improved thanks to the use of 3D hydrodynamical simulations but the calculation of eigenfrequencies relies on empirical models for the description of the Lagrangian perturbation of turbulent pressure: the reduced-$Gamma_1$ model (RGM) and the gas-$Gamma_1$ model (GGM). Starting from the fully compressible turbulence equations, we derive both the GGM and RGM models using a closure to model the flux of turbulent kinetic energy. It is found that both models originate from two terms: the source of turbulent pressure due to compression produced by the oscillations and the divergence of the flux of turbulent pressure. It is also demonstrated that they are both compatible with the adiabatic approximation but also imply a number of questionable assumptions mainly regarding mode physics. Among others hypothesis, one has to neglect the Lagrangian perturbation of the dissipation of turbulent kinetic energy into heat and the Lagrangian perturbation of buoyancy work.



قيم البحث

اقرأ أيضاً

For $Gamma_1$-structures on 3-manifolds, we give a very simple proof of Thurstons regularization theorem, first proved in cite{thurston}, without using Mathers homology equivalence. Moreover, in the co-orientable case, the resulting foliation can be chosen of a precise kind, namely an open book foliation modified by suspension. There is also a model in the non co-orientable case.
89 - Tao Cai 2019
In this paper, we investigate the upward overshooting by three-dimensional numerical simulations. We find that the above convectively stable zone can be partitioned into three layers: the thermal adjustment layer (mixing both entropy and material), t he turbulent dissipation layer (mixing material but not entropy), and the thermal dissipation layer (mixing neither entropy nor material). The turbulent dissipation layer is separated from the thermal adjustment layer and the thermal dissipation layer by the first and second zero points of the vertical velocity correlation. The simulation results are in good agreement with the prediction of the one-dimensional turbulent Reynolds stress model. First, the layer structure is similar. Second, the upper boundary of the thermal adjustment layer is close to the peak of the magnitude of the temperature perturbation. Third, the Peclet number at the upper boundary of the turbulent dissipation layer is close to 1. In addition, we have studied the scalings of the overshooting distance on the relative stability parameter $S$, the Prandtl number $rm Pr$, and the Peclet number $rm Pe$. The scaling on $S$ is not unique. The trend is that the overshooting distance decreases with $S$. Fitting on $rm Pr$ shows that the overshooting distance increases with $rm Pr$. Fitting on $rm Pe$ shows that the overshooting distance decreases with $rm Pe$. Finally, we calculate the ratio of the thickness of the turbulent dissipation layer to that of the thermal adjustment layer. The ratio remains almost constant, with an approximate value of 2.4.
83 - Petri J. Kapyla 2019
(abridged) Context: Turbulent diffusion of large-scale flows and magnetic fields play major roles in many astrophysical systems. Aims: Our goal is to compute turbulent viscosity and magnetic diffusivity, relevant for diffusing large-scale flows and m agnetic fields, respectively, and their ratio, the turbulent magnetic Prandtl number, ${rm Pm}_{rm t}$, for isotropically forced homogeneous turbulence. Methods: We use simulations of forced turbulence in fully periodic cubes composed of isothermal gas with an imposed large-scale sinusoidal shear flow. Turbulent viscosity is computed either from the resulting Reynolds stress or from the decay rate of the large-scale flow. Turbulent magnetic diffusivity is computed using the test-field method. The scale dependence of the coefficients is studied by varying the wavenumber of the imposed sinusoidal shear and test fields. Results: We find that turbulent viscosity and magnetic diffusivity are in general of the same order of magnitude. Furthermore, the turbulent viscosity depends on the fluid Reynolds number (${rm Re}$) and scale separation ratio of turbulence. The scale dependence of the turbulent viscosity is found to be well approximated by a Lorentzian. The results for the turbulent transport coefficients appear to converge at sufficiently high values of ${rm Re}$ and the scale separation ratio. However, a weak decreasing trend is found even at the largest values of ${rm Re}$. The turbulent magnetic Prandtl number converges to a value that is slightly below unity for large ${rm Re}$ whereas for small ${rm Re}$, we find values between 0.5 and 0.6. Conclusions: The turbulent magnetic diffusivity is in general consistently higher than the turbulent viscosity. The actual value of ${rm Pm}_{rm t}$ found from the simulations ($approx0.9ldots0.95$) at large ${rm Re}$ and scale separation ratio is higher than any of the analytic predictions.
A turbulent transport of radiation in the solar convective zone is investigated. The mean-field equation for the irradiation intensity is derived. It is shown that due to the turbulent effects, the effective penetration length of radiation can be inc reased in several times in comparison with the mean penetration length of radiation (defined as an inverse mean absorption coefficient). Using the model of the solar convective zone based on the mixing length theory, where the mean penetration length of radiation is usually much smaller than the turbulent correlation length, it is demonstrated that the ratio of the effective penetration length to the mean penetration length of radiation increases in 2.5 times in the vicinity of the solar surface. The main reason are the compressibility effects that become important in the vicinity of the solar surface where temperature and density fluctuations increase towards the solar surface, enhancing fluctuations of the radiation absorption coefficient and increasing the effective penetration length of radiation.
133 - I. Rogachevskii 2011
In this study we investigate the effects of turbulent convection on formation of large-scale inhomogeneous magnetic structures by means of Large-Eddy Simulation (LES) for convection in solar-type stars. The main idea of this study is the implementati on of a new subgrid-scale model for the effective Lorentz force in a three-dimensional nonlinear radiative magnetohydrodynamics (MHD) code developed for simulating the upper solar convection zone and lower atmosphere. To this end we derived the energy budget equations, which include the effects of the subgrid-scale turbulence on the Lorentz-force, and implemented the new subgrid-scale turbulence model (TELF-Model) in a three-dimensional nonlinear MHD LES code. Using imposed initial vertical and horizontal uniform magnetic fields in LES with the TELF-Model, we have shown that the magnetic flux tubes formation is started when the initial mean magnetic field is larger than a threshold value (about 100 G). This is in agreement with the theoretical studies by Rogachevskii and Kleeorin (2007). We have determined the vertical profiles of the velocity and magnetic fluctuations, total MHD energy and anisotropy of turbulent magneto-convection, kinetic and current and cross helicities.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا