ﻻ يوجد ملخص باللغة العربية
We show that a lattice of phase oscillators with random natural frequencies, described by a generalization of the nearest-neighbor Kuramoto model with an additional cosine coupling term, undergoes a phase transition from a desynchronized to a synchronized state. This model may be derived from the complex Ginzburg-Landau equations describing a disordered lattice of driven-dissipative Bose-Einstein condensates of exciton polaritons. We derive phase diagrams that classify the desynchronized and synchronized states that exist in both one and two dimensions. This is achieved by outlining the connection of the oscillator model to the quantum description of localization of a particle in a random potential through a mapping to a modified Kardar-Parisi-Zhang equation. Our results indicate that long-range order in polariton condensates, and other systems of coupled oscillators, is not destroyed by randomness in their natural frequencies.
To harness technological opportunities arising from optically controlled quantum many-body states a deeper theoretical understanding of driven-dissipative interacting systems and their nonequilibrium phase transitions is essential. Here we provide nu
We review recent results on the coherence and superfluidity of driven dissipative condensates, i.e., systems of weakly-interacting non-conserved Bosons, such as polariton condensates. The presence of driving and dissipation has dramatically different
One of the most important issues in disordered systems is the interplay of the disorder and repulsive interactions. Several recent experimental advances on this topic have been made with ultracold atoms, in particular the observation of Anderson loca
We study the dynamics of a two-component Bose-Einstein condensate (BEC) of $^{174}$Yb atoms coherently driven on a narrow optical transition. The excitation transfers the BEC to a superposition of states with different internal and momentum quantum n
We study the nonequilibrium steady state of the driven-dissipative Bose-Hubbard model with Kerr nonlinearity. Employing a mean-field decoupling for the intercavity hopping $J$, we find that the steep crossover between low and high photon-density stat