ترغب بنشر مسار تعليمي؟ اضغط هنا

Understanding the atmospheric properties and chemical composition of the ultra-hot Jupiter HAT-P-7b: III. Changing ionisation and the emergence of an ionosphere

66   0   0.0 ( 0 )
 نشر من قبل Christiane Helling
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Ch. Helling




اسأل ChatGPT حول البحث

Ultra-hot Jupiters are the hottest close-in exoplanets discovered so far, and present a unique possibility to explore hot and cold chemistry on one object. The tidally locked ultra-hot Jupiter HAT-P-7b has a day/night temperature difference of ~ 2500K, confining cloud formation to the nightside and efficient ionisation to the dayside. Both have distinct observational signatures. We analyse plasma and magnetic processes in the atmosphere of the ultra-hot Jupiter HAT-P-7b to investigate the formation of a thermal ionosphere and the possibility of magnetically coupling the atmospheric gas as the base for an extended exosphere. We show which ions and atoms may be used as spectral tracers, and if and where conditions for lightning may occur within the clouds of HAT-P-7b, evaluate characteristic plasma and magnetic coupling parameters, and a LTE radiative transfer is solved for the ionised gas phase. The ionisation throughout HAT-P-7bs atmosphere varies drastically between day- and nightside. The dayside has high levels of thermal ionisation and long-range electromagnetic interactions dominate over kinetic electron-neutral interactions, suggesting a day-night difference in magnetic coupling. K+, Na+, Li+, Ca+, and Al+ are more abundant than their atomic counterparts on the dayside. The minimum magnetic flux density for electrons for magnetic coupling is B<0.5G for all regions of HAT-P-7bs atmosphere. HAT-P-7bs dayside has an asymmetric ionosphere that extends deep into the atmosphere, the nightside has no thermally driven ionosphere. A corresponding asymmetry is imprinted in the ion/neutral composition at the terminators. The ionosphere on HAT-P-7b may be directly traced by the Ca+ H&K lines if the local temperature is > 5000K. The whole atmosphere may couple to a global, large-scale magnetic field, and lightning may occur on the nightside.



قيم البحث

اقرأ أيضاً

124 - Ch. Helling , N. Iro , L. Corrales 2019
Ultra-hot Jupiters have recently attracted interest from observers and theoreticians alike, as they provide observationally accessible test cases. We apply a hierarchical modelling approach as a virtual laboratory to study cloud formation and gas-pha se chemistry. We utilise 97 vertical 1D profiles of a 3D GCM for HAT-P-7b to evaluate our kinetic cloud formation model consistently with the local equilibrium gas-phase composition. The day/night temperature difference on HAT-P-7b (~ 2500K) causes clouds to form on the nightside (dominated by H2/He) while the dayside (dominated by H/He) retains cloud-free equatorial regions. The cloud particles vary in composition and size throughout the vertical extension of the cloud, but also globally. TiO2[s]/Al2O3[s]/CaTiO3[s]-particles of cm-sized radii occur in the higher dayside-latitudes, resulting in a dayside dominated by gas-phase opacity. The opacity on the nightside, however, is dominated by 0.01 ... 0.1 mum particles made of a material mix dominated by silicates. The gas pressure at which the atmosphere becomes optically thick is ~1d-4 bar in cloudy regions, and ~0.1 bar in cloud-free regions. HAT-P-7b features strong morning/evening terminator asymmetries, providing an example of patchy clouds and azimuthally-inhomogeneous chemistry. The large temperature differences result in an increasing geometrical extension from the night- to the dayside. The chemcial equilibrium H2O abundance at the terminator changes by < 1 dex with altitude and < 0.3 dex (a factor of 2) across the terminator for a given pressure, indicating that H2O abundances derived from transmission spectra can be representative of the well-mixed metallicity at P > 10 bar. We suggest the atmospheric C/O as an important tool to trace the presence and location of clouds in exoplanet atmospheres. Phase curve variability of HAT-P-7b is unlikely to be caused by dayside clouds.
The hot-Jupiter HAT-P-2b has become a prime target for Spitzer Space Telescope observations aimed at understanding the atmospheric response of exoplanets on highly eccentric orbits. Here we present a suite of three-dimensional atmospheric circulation models for HAT-P-2b that investigate the effects of assumed atmospheric composition and rotation rate on global scale winds and thermal patterns. We compare and contrast atmospheric models for HAT-P-2b, which assume one and five times solar metallicity, both with and without TiO/VO as atmospheric constituents. Additionally we compare models that assume a rotation period of half, one, and two times the nominal pseudo-synchronous rotation period. We find that changes in assumed atmospheric metallicity and rotation rate do not significantly affect model predictions of the planetary flux as a function of orbital phase. However, models in which TiO/VO are present in the atmosphere develop a transient temperature inversion between the transit and secondary eclipse events that results in significant variations in the timing and magnitude of the peak of the planetary flux compared with models in which TiO/VO are omitted from the opacity tables. We find that no one single atmospheric model can reproduce the recently observed full orbit phase curves at 3.6, 4.5 and 8.0 microns, which is likely due to a chemical process not captured by our current atmospheric models for HAT-P-2b. Further modeling and observational efforts focused on understanding the chemistry of HAT-P-2bs atmosphere are needed and could provide key insights into the interplay between radiative, dynamical, and chemical processes in a wide range of exoplanet atmospheres.
Ultra-hot Jupiters offer interesting prospects for expanding our theories on dynamical evolution and the properties of extremely irradiated atmospheres. In this context, we present the analysis of new optical spectroscopy for the transiting ultra-hot Jupiter WASP-121b. We first refine the orbital properties of WASP-121b, which is on a nearly polar (obliquity $psi^{rm North}$=88.1$pm$0.25$^{circ}$ or $psi^{rm South}$=91.11$pm$0.20$^{circ}$) orbit, and exclude a high differential rotation for its fast-rotating (P$<$1.13 days), highly inclined ($i_mathrm{star}^{rm North}$=8.1$stackrel{+3.0}{_{-2.6}}^{circ}$ or $i_mathrm{star}^{rm South}$=171.9$stackrel{+2.5}{_{-3.4}}^{circ}$) star. We then present a new method that exploits the reloaded Rossiter-McLaughlin technique to separate the contribution of the planetary atmosphere and of the spectrum of the stellar surface along the transit chord. Its application to HARPS transit spectroscopy of WASP-121b reveals the absorption signature from metals, likely atomic iron, in the planet atmospheric limb. The width of the signal (14.3$pm$1.2 km/s) can be explained by the rotation of the tidally locked planet. Its blueshift (-5.2$pm$0.5 km/s) could trace strong winds from the dayside to the nightside, or the anisotropic expansion of the planetary thermosphere.
We present the low-resolution transmission spectra of the puffy hot Jupiter HAT-P-65b (0.53 M$_mathrm{Jup}$, 1.89 R$_mathrm{Jup}$, $T_mathrm{eq}=1930$ K), based on two transits observed using the OSIRIS spectrograph on the 10.4 m Gran Telescopio CANA RIAS (GTC). The transmission spectra of the two nights are consistent, covering the wavelength range 517--938 nm and consisting of mostly 5 nm spectral bins. We perform equilibrium-chemistry spectral retrieval analyses on the jointly fitted transmission spectrum and obtain an equilibrium temperature of $1645^{+255}_{-244}$ K and a cloud coverage of $36^{+23}_{-17}$%, revealing a relatively clear planetary atmosphere. Based on free-chemistry retrieval, we report strong evidence for TiO. Additional individual analyses in each night reveal weak-to-moderate evidence for TiO in both nights, but moderate evidence for Na or VO only in one of the nights. Future high-resolution Doppler spectroscopy as well as emission observations will help confirm the presence of TiO and constrain its role in shaping the vertical thermal structure of HAT-P-65bs atmosphere.
153 - Ch. Helling , D. Lewis , D. Samra 2021
Ultra-hot Jupiters are the hottest exoplanets discovered so far. Observations begin to provide insight into the composition of their extended atmospheres and their chemical day/night asymmetries. Both are strongly affected by cloud formation. We expl ore trends in cloud properties for a sample of five giant gas planets: WASP-43b, WASP-18b, HAT-P-7b, WASP-103b, and WASP-121b. This provides a reference frame for cloud properties for the JWST targets WASP-43b and WASP-121b. We further explore chemically inert tracers to observe geometrical asymmetries, and if the location of inner boundary of a 3D GCM matters for the clouds that form. The large day/night temperature differences of ultra-hot Jupiters cause large chemical asymmetries: cloud-free days but cloudy nights, atomic vs. molecular gases and respectively different mean molecular weights, deep thermal ionospheres vs. low-ionised atmospheres, undepleted vs enhanced C/O. WASP-18b, as the heaviest planet in the sample, has the lowest global C/O. The global climate may be considered as similar amongst ultra-hot Jupiters, but different to that of hot gas giants. The local weather, however, is individual for each planet since the local thermodynamic conditions, and hence the local cloud and gas properties, differ. The morning and the evening terminator of ultra-hot Jupiters will carry signatures of their strong chemical asymmetry such that ingress/egress asymmetries can be expected. An increased C/O ratio is a clear sign of cloud formation, making cloud modelling a necessity when utilizing C/O (or other mineral ratios) as tracer for planet formation. The changing geometrical extension of the atmosphere from the day to the nightside may be probed through chemically inert species like helium. Ultra-hot Jupiters are likely to develop deep atmospheric ionospheres which may impact the atmosphere dynamics through MHD processes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا