ﻻ يوجد ملخص باللغة العربية
Our all-electron fully relativistic Dirac-Fock (DF) and nonrelativistic (NR) Hartree-Fock (HF) SCF molecular calculations for the superheavy tetrahedral (T$_d$) oganesson tetratennesside OgT$_4$ predict atomization energy (Ae) of 7.45 and -11.21 eV, respectively. Our DF and NR calculations, however for the square planar (D$_{4h}$)OsTs$_4$ predict atomization energy (Ae) o 6.34 and -8.56 ev, respectively. There are dramatic relativistic effects for the atomization energy of T$_d$ and D$_{4h}$ OgT$_4$ of -18.65 eV and 14.90 eV, respectively. Whereas our DF calculations predict the T$_d$OgT$_4$ to be more stable than the D$_{4h}$ OgT$_4$ by ~1.10 eV, our NR calculations predict the D$_{4h}$ OgT$_4$ to be more stable than the T$_d$ OgT$_4$ by ~2.65eV. Our NR calculations predict both the T$_d$ and D$_{4h}$ OgTs$_4$ to be unbound by 11.21 and 8.56 eV, respectively. However our relativistic DF calculations predict both the T$_d$ and D$_{4h}$ OgT$_4$ to be bound by 7.45 and 6.34 eV respectively and so the relativistic treatment is mandatory for bonding and binding in the pentatomic superheavy system with 586 electrons involving the two heaviest SHE Ts and Og.
Our gargantuan ab initio all-electron fully relativistic Dirac-Fock (DF), nonrelativistic (NR) Hartree-Fock(HF) and Dirac-Fock-Breit-Gaunt(DFBG) molecular SCF calculations for the superheavy octahedral Oganesson hexatenniside OgTs$_6$ predict atomiza
Our all electron (DFBG) calculations show differences between relativistic and non-relativistic calculations for the structure of the isomers of Og(CO)6
According to theory, cluster radioactivity becomes an important decay mode in superheavy nuclei. In this work, we predict that the strongly-asymmetric fission, or cluster emission, is in fact the dominant fission channel for $^{294}_{118}$Og$_{176}$,
We report resistance and elastoresistance measurements on (Ba$_{0.5}$K$_{0.5}$)Fe$_2$As$_2$, CaKFe$_4$As$_4$, and KCa$_2$Fe$_4$As$_4$F$_2$. The Fe-site symmetry is $D_{2d}$ in the first compound but $C_{2v}$ in the latter two, which lifts the degener
Recent two-stream deep Convolutional Neural Networks (ConvNets) have made significant progress in recognizing human actions in videos. Despite their success, methods extending the basic two-stream ConvNet have not systematically explored possible net