ﻻ يوجد ملخص باللغة العربية
We compute the 3d N = 2 superconformal indices for 3d/1d coupled systems, which arise as the worldvolume theories of intersecting surface defects engineered by Higgsing 5d N = 1 gauge theories. We generalize some known 3d dualities, including non-Abelian 3d mirror symmetry and 3d/3d correspondence, to some of the simple 3d/1d coupled systems. Finally we propose a q-Virasoro construction for the superconformal indices.
We initiate the study of intersecting surface operators/defects in four-dimensional quantum field theories (QFTs). We characterize these defects by coupled 4d/2d/0d theories constructed by coupling the degrees of freedom localized at a point and on i
We analyze intersecting surface defects inserted in interacting four-dimensional N = 2 supersymmetric quantum field theories. We employ the realization of a class of such systems as the infrared fixed points of renormalization group flows from larger
An exact formula for partition functions in 3d field theories was recently suggested by Jafferis, and Hama, Hosomichi, and Lee. These functions are expressed in terms of specific $q$-hypergeometric integrals whose key building block is the double sin
We propose a general formula for the perturbative large N superconformal index of 5d quiver fixed point theories that have an AdS(6)xS(4)/Z(n) supergravity dual. This index is obtained from the parent theory by projecting to orbifold-invariant states
Superconformal indices of 4d N=1 SYM theories with SU(N) and SP(2N) gauge groups are investigated for N_f=N and N_f=N+1 flavors, respectively. These indices vanish for generic values of the flavor fugacities. However, for a singular submanifold of fu