ترغب بنشر مسار تعليمي؟ اضغط هنا

A note on $sigma$-point and nontangential convergence

101   0   0.0 ( 0 )
 نشر من قبل Jayanta Sarkar
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English
 تأليف Jayanta Sarkar




اسأل ChatGPT حول البحث

In this article, we generalize a theorem of Victor L. Shapiro concerning nontangential convergence of the Poisson integral of a $L^p$-function. We introduce the notion of $sigma$-points of a locally finite measure and consider a wide class of convolution kernels. We show that convolution integrals of a measure have nontangential limits at $sigma$-points of the measure. We also investigate the relationship between $sigma$-point and the notion of the strong derivative introduced by Ramey and Ullrich. In one dimension, these two notions are the same.



قيم البحث

اقرأ أيضاً

Here we present some compliments to theorems of Gerard and Sibuya, on the convergence of multivariate formal power series solutions of nonlinear meromorphic Pfaffian systems. Their the most known results concern completely integrable systems with non degenerate linear parts, whereas we consider some cases of non-integrability and degeneracy.
We provide elementary proofs for the terms that are left in the work of Kelly Bickel, Sandra Pott, Maria C. Reguera, Eric T. Sawyer, Brett D. Wick who proved the sharp weighted $A_2$ bound for Haar shifts and Haar multiplier. Our proofs use weighted square function estimate, Carleson embedding and Wilsons system.
121 - Rolando Perez Iii 2020
We prove that if f and g are holomorphic functions on an open connected domain, with the same moduli on two intersecting segments, then f = g up to the multiplication of a unimodular constant, provided the segments make an angle that is an irrational multiple of $pi$. We also prove that if f and g are functions in the Nevanlinna class, and if |f | = |g| on the unit circle and on a circle inside the unit disc, then f = g up to the multiplication of a unimodular constant.
Let $mathsf M$ and $mathsf M _{mathsf S}$ respectively denote the Hardy-Littlewood maximal operator with respect to cubes and the strong maximal operator on $mathbb{R}^n$, and let $w$ be a nonnegative locally integrable function on $mathbb{R}^n$. We define the associated Tauberian functions $mathsf{C}_{mathsf{HL},w}(alpha)$ and $mathsf{C}_{mathsf{S},w}(alpha)$ on $(0,1)$ by [ mathsf{C}_{mathsf{HL},w}(alpha) :=sup_{substack{E subset mathbb{R}^n 0 < w(E) < infty}} frac{1}{w(E)}w({x in mathbb{R}^n : mathsf M chi_E(x) > alpha}) ] and [ mathsf{C}_{mathsf{S},w}(alpha) := sup_{substack{E subset mathbb{R}^n 0 < w(E) < infty}} frac{1}{w(E)}w({x in mathbb{R}^n : mathsf M _{mathsf S}chi_E(x) > alpha}). ] Utilizing weighted Solyanik estimates for $mathsf M$ and $mathsf M_{mathsf S}$, we show that the function $mathsf{C}_{mathsf{HL},w} $ lies in the local Holder class $C^{(c_n[w]_{A_{infty}})^{-1}}(0,1)$ and $mathsf{C}_{mathsf{S},w} $ lies in the local Holder class $C^{(c_n[w]_{A_{infty}^ast})^{-1}}(0,1)$, where the constant $c_n>1$ depends only on the dimension $n$.
102 - R. B. Paris 2015
We examine a class of exact solutions for the eigenvalues and eigenfunctions of a doubly anharmonic oscillator defined by the potential $V(x)=omega^2/2 x^2+lambda x^4/4+eta x^6/6$, $eta>0$. These solutions hold provided certain constraints on the cou pling parameters $omega^2$, $lambda$ and $eta$ are satisfied.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا