ترغب بنشر مسار تعليمي؟ اضغط هنا

Picosecond energy transfer in a transition metal dichalcogenide-graphene heterostructure revealed by transient Raman spectroscopy

70   0   0.0 ( 0 )
 نشر من قبل Carino Ferrante
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Intense light-matter interactions and unique structural and electrical properties make Van der Waals heterostructures composed by Graphene (Gr) and monolayer transition metal dichalcogenides (TMD) promising building blocks for tunnelling transistors, flexible electronics, as well as optoelectronic devices, including photodetectors, photovoltaics and QLEDs, bright and narrow-line emitters using minimal amounts of active absorber material. The performance of such devices is critically ruled by interlayer interactions which are still poorly understood in many respects. Specifically, two classes of coupling mechanisms have been proposed: charge transfer (CT) and energy transfer (ET), but their relative efficiency and the underlying physics is an open question. Here, building on a time resolved Raman scattering experiment, we determine the electronic temperature profile of Gr in response to TMD photo-excitation, tracking the picosecond dynamics of the G and 2D bands. Compelling evidence for a dominant role ET process accomplished within a characteristic time of ~ 3 ps is provided. Our results suggest the existence of an intermediate process between the observed picosecond ET and the generation of a net charge underlying the slower electric signals detected in optoelectronic applications.



قيم البحث

اقرأ أيضاً

The rise of quantum science and technologies motivates photonics research to seek new platforms with strong light-matter interactions to facilitate quantum behaviors at moderate light intensities. One promising platform to reach such strong light-mat ter interacting regimes is offered by polaritonic metasurfaces, which represent ultrathin artificial media structured on nano-scale and designed to support polaritons - half-light half-matter quasiparticles. Topological polaritons, or topolaritons, offer an ideal platform in this context, with unique properties stemming from topological phases of light strongly coupled with matter. Here we explore polaritonic metasurfaces based on 2D transition metal dichalcogenides (TMDs) supporting in-plane polarized exciton resonances as a promising platform for topological polaritonics. We enable a spin-Hall topolaritonic phase by strongly coupling valley polarized in-plane excitons in a TMD monolayer with a suitably engineered all-dielectric topological photonic metasurface. We first show that the strong coupling between topological photonic bands supported by the metasurface and excitonic bands in MoSe2 yields an effective phase winding and transition to a topolaritonic spin-Hall state. We then experimentally realize this phenomenon and confirm the presence of one-way spin-polarized edge topolaritons. Combined with the valley polarization in a MoSe2 monolayer, the proposed system enables a new approach to engage the photonic angular momentum and valley degree of freedom in TMDs, offering a promising platform for photonic/solid-state interfaces for valleytronics and spintronics.
Dzyaloshinskii-Moriya interaction (DMI) is vital to form various chiral spin textures, novel behaviors of magnons and permits their potential applications in energy-efficient spintronic devices. Here, we realize a sizable bulk DMI in a transition met al dichalcogenide (TMD) 2H-TaS2 by intercalating Fe atoms, which form the chiral supercells with broken spatial inversion symmetry and also act as the source of magnetic orderings. Using a newly developed protonic gate technology, gate-controlled protons intercalation could further change the carrier density and intensely tune DMI via the Ruderman-Kittel-Kasuya-Yosida mechanism. The resultant giant topological Hall resistivity of 1.4 uohm.cm at -5.2V (about 460% of the zero-bias value) is larger than most of the known magnetic materials. Theoretical analysis indicates that such a large topological Hall effect originates from the two-dimensional Bloch-type chiral spin textures stabilized by DMI, while the large anomalous Hall effect comes from the gapped Dirac nodal lines by spin-orbit interaction. Dual-intercalation in 2HTaS2 provides a model system to reveal the nature of DMI in the large family of TMDs and a promising way of gate tuning of DMI, which further enables an electrical control of the chiral spin textures and related electromagnetic phenomena.
The long wavelength moire superlattices in twisted 2D structures have emerged as a highly tunable platform for strongly correlated electron physics. We study the moire bands in twisted transition metal dichalcogenide homobilayers, focusing on WSe$_2$ , at small twist angles using a combination of first principles density functional theory, continuum modeling, and Hartree-Fock approximation. We reveal the rich physics at small twist angles $theta<4^circ$, and identify a particular magic angle at which the top valence moire band achieves almost perfect flatness. In the vicinity of this magic angle, we predict the realization of a generalized Kane-Mele model with a topological flat band, interaction-driven Haldane insulator, and Mott insulators at the filling of one hole per moire unit cell. The combination of flat dispersion and uniformity of Berry curvature near the magic angle holds promise for realizing fractional quantum anomalous Hall effect at fractional filling. We also identify twist angles favorable for quantum spin Hall insulators and interaction-induced quantum anomalous Hall insulators at other integer fillings.
Fabricating van der Waals (vdW) bilayer heterostructures (BL-HS) by stacking the same or different two-dimensional (2D) layers, offers a unique physical system with rich electronic and optical properties. Twist-angle between component layers has emer ged as a remarkable parameter that can control the period of lateral confinement, and nature of the exciton (Coulomb bound electron-hole pair) in reciprocal space thus creating exotic physical states including moire excitons. In this review article, we focus on opto-electronic properties of excitons in transition metal dichalcogenide (TMD) semiconductor twisted BL-HS. We look at existing evidence of moire excitons in localized and strongly correlated states, and at nanoscale mapping of moire superlattice and lattice-reconstruction. This review will be helpful in guiding the community as well as motivating work in areas such as near-field optical measurements and controlling the creation of novel physical states.
Here we show, with simultaneous transport and photoemission measurements, that the graphene terminated SiC(0001) surface undergoes a metal-insulator transition (MIT) upon dosingwith small amounts of atomic hydrogen. We find the room temperature resis tance increases by about 4 orders of magnitude, a transition accompanied by anomalies in the momentum-resolved spectral function including a non-Fermi Liquid behaviour and a breakdown of the quasiparticle picture. These effects are discussed in terms of a possible transition to a strongly (Anderson) localized ground state.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا