ﻻ يوجد ملخص باللغة العربية
Heart Sound (also known as phonocardiogram (PCG)) analysis is a popular way that detects cardiovascular diseases (CVDs). Most PCG analysis uses supervised way, which demands both normal and abnormal samples. This paper proposes a method of unsupervised PCG analysis that uses beta variational auto-encoder ($beta-text{VAE}$) to model the normal PCG signals. The best performed model reaches an AUC (Area Under Curve) value of 0.91 in ROC (Receiver Operating Characteristic) test for PCG signals collected from the same source. Unlike majority of $beta-text{VAE}$s that are used as generative models, the best-performed $beta-text{VAE}$ has a $beta$ value smaller than 1. Further experiments then find that the introduction of a light weighted KL divergence between distribution of latent space and normal distribution improves the performance of anomaly PCG detection based on anomaly scores resulted by reconstruction loss. The fact suggests that anomaly score based on reconstruction loss may be better than anomaly scores based on latent vectors of samples
Dynamical variational auto-encoders (DVAEs) are a class of deep generative models with latent variables, dedicated to time series data modeling. DVAEs can be considered as extensions of the variational autoencoder (VAE) that include the modeling of t
Variational auto-encoders (VAEs) are deep generative latent variable models that can be used for learning the distribution of complex data. VAEs have been successfully used to learn a probabilistic prior over speech signals, which is then used to per
Sound event detection (SED) methods typically rely on either strongly labelled data or weakly labelled data. As an alternative, sequentially labelled data (SLD) was proposed. In SLD, the events and the order of events in audio clips are known, withou
Cardiovascular diseases are the leading cause of deaths and severely threaten human health in daily life. On the one hand, there have been dramatically increasing demands from both the clinical practice and the smart home application for monitoring t
An effective approach to non-parallel voice conversion (VC) is to utilize deep neural networks (DNNs), specifically variational auto encoders (VAEs), to model the latent structure of speech in an unsupervised manner. A previous study has confirmed th