ﻻ يوجد ملخص باللغة العربية
The origin of hard X-rays and gamma-rays emitted from the solar atmosphere during occulted solar flares is still debated. The hard X-ray emissions could come from flaring loop tops rising above the limb or Coronal Mass Ejections (CME) shock waves, two by-products of energetic solar storms. For the shock scenario to work, accelerated particles must be released on magnetic field lines rooted on the visible disk and precipitate. We present a new Monte Carlo code that computes particle acceleration at shocks propagating along large coronal magnetic loops. A first implementation of the model is carried out for the 2014 September 1 event and the modeled electron spectra are compared with those inferred from Fermi Gamma-ray Burst Monitor (GBM) measurements. When particle diffusion processes are invoked our model can reproduce the hard electron spectra measured by GBM nearly ten minutes after the estimated on-disk hard X-rays appear to have ceased from the flare site.
We report the first science results from the newly completed Expanded Owens Valley Solar Array (EOVSA), which obtained excellent microwave imaging spectroscopy observations of SOL2017-09-10, a classic partially-occulted solar limb flare associated wi
In this multi-instrument paper, we search for evidence of sustained magnetic reconnection far beyond the impulsive phase of the X8.2-class solar flare on 2017 September 10. Using Hinode/EIS, CoMP, SDO/AIA, K-Cor, Hinode/XRT, RHESSI, and IRIS, we stud
We investigate quasi-periodic pulsations (QPPs) of high-energy nonthermal emissions from an X9.3 flare (SOL2017-Sep-06T11:53), the most powerful flare since the beginning of solar cycle 24. The QPPs are identified as a series of regular and repeating
Context. The observation of >100 MeV {gamma}-rays in the minutes to hours following solar flares suggests that high-energy particles interacting in the solar atmosphere can be stored and/or accelerated for long time periods. The occasions when {gamma
Context: Hard X-rays from solar flares are an important diagnostic of particle acceleration and transport in the solar atmosphere. Any observed X-ray flux from on-disc sources is composed of direct emission plus Compton backscattered photons (albedo)