ترغب بنشر مسار تعليمي؟ اضغط هنا

Pandemic Spread in Communities via Random Graphs

338   0   0.0 ( 0 )
 نشر من قبل Yaron Oz
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Working in the multi-type Galton-Watson branching-process framework we analyse the spread of a pandemic via a most general random contact graph. Our model consists of several communities, and takes an input parameters that outline the contacts between individuals in different communities. Given these parameters, we determine whether there will be a pandemic outbreak and if yes, we calculate the size of the giant--connected-component of the graph, thereby, determining the fraction of the population of each type that would contract the disease before it ends. We show that the disease spread has a natural evolution direction given by the Perron-Frobenius eigenvector of a matrix whose entries encode the average number of individuals of one type expected to be infected by an individual of another type. The corresponding eigenvalue is the basic reproduction number of the pandemic. We perform numerical simulations that compare homogeneous and heterogeneous disease spread graphs and quantify the difference between the pandemics. We elaborate on the difference between herd immunity and the end of the pandemics and the effect of countermeasures on the fraction of infected population.



قيم البحث

اقرأ أيضاً

We study the spread of information on multi-type directed random graphs. In such graphs the vertices are partitioned into distinct types (communities) that have different transmission rates between themselves and with other types. We construct multiv ariate generating functions and use multi-type branching processes to derive an equation for the size of the large out-components in multi-type random graphs with a general class of degree distributions. We use our methods to analyse the spread of epidemics and verify the results with population based simulations.
246 - Gleb Oshanin 2009
We study the kinetics for the search of an immobile target by randomly moving searchers that detect it only upon encounter. The searchers perform intermittent random walks on a one-dimensional lattice. Each searcher can step on a nearest neighbor sit e with probability alpha, or go off lattice with probability 1 - alpha to move in a random direction until it lands back on the lattice at a fixed distance L away from the departure point. Considering alpha and L as optimization parameters, we seek to enhance the chances of successful detection by minimizing the probability P_N that the target remains undetected up to the maximal search time N. We show that even in this simple model a number of very efficient search strategies can lead to a decrease of P_N by orders of magnitude upon appropriate choices of alpha and L. We demonstrate that, in general, such optimal intermittent strategies are much more efficient than Brownian searches and are as efficient as search algorithms based on random walks with heavy-tailed Cauchy jump-length distributions. In addition, such intermittent strategies appear to be more advantageous than Levy-based ones in that they lead to more thorough exploration of visited regions in space and thus lend themselves to parallelization of the search processes.
We study tilings of the square lattice by linear trimers. For a cylinder of circumference m, we construct a conserved functional of the base of the tilings, and use this to block-diagonalize the transfer matrix. The number of blocks increases exponen tially with m. The dimension of the ground-state block is shown to grow as (3 / 2^{1/3})^m. We numerically diagonalize this block for m <= 27, obtaining the estimate S = 0.158520 +- 0.000015 for the entropy per site in the thermodynamic limit. We present numerical evidence that the continuum limit of the model has conformal invariance. We measure several scaling dimensions, including those corresponding to defects of dimers and L-shaped trimers. The trimer tilings of a plane admits a two-dimensional height representation. Monte Carlo simulations of the height variables show that the height-height correlations grows logarithmically at large separation, and the orientation-orientation correlations decay as a power law.
109 - Zhi-Feng Huang 2000
A self-organized model with social percolation process is proposed to describe the propagations of information for different trading ways across a social system and the automatic formation of various groups within market traders. Based on the market structure of this model, some stylized observations of real market can be reproduced, including the slow decay of volatility correlations, and the fat tail distribution of price returns which is found to cross over to an exponential-type asymptotic decay in different dimensional systems.
Using the replica method, we develop an analytical approach to compute the characteristic function for the probability $mathcal{P}_N(K,lambda)$ that a large $N times N$ adjacency matrix of sparse random graphs has $K$ eigenvalues below a threshold $l ambda$. The method allows to determine, in principle, all moments of $mathcal{P}_N(K,lambda)$, from which the typical sample to sample fluctuations can be fully characterized. For random graph models with localized eigenvectors, we show that the index variance scales linearly with $N gg 1$ for $|lambda| > 0$, with a model-dependent prefactor that can be exactly calculated. Explicit results are discussed for Erdos-Renyi and regular random graphs, both exhibiting a prefactor with a non-monotonic behavior as a function of $lambda$. These results contrast with rotationally invariant random matrices, where the index variance scales only as $ln N$, with an universal prefactor that is independent of $lambda$. Numerical diagonalization results confirm the exactness of our approach and, in addition, strongly support the Gaussian nature of the index fluctuations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا