ﻻ يوجد ملخص باللغة العربية
Electronic topology in metallic kagome compounds is under intense scrutiny. We present transport experiments in Na2/3CoO2 in which the Na order differentiates a Co kagome sub-lattice in the triangular CoO2 layers. Hall and magnetoresistance (MR) data under high fields give evidence for the coexistence of light and heavy carriers. At low Ts, the dominant light carrier conductivity at zero field is suppressed by a B-linear MR suggesting Dirac like quasiparticles. Lifshitz transitions induced at large B and T unveil the lower mobility carriers. They display a negative B^2 MR due to scattering from magnetic moments likely pertaining to a flat band. We underline an analogy with heavy Fermion physics.
We report a complete set of $^{59}$Co NMR data taken on the $x=2/3$ phase of sodium cobaltates Na$_{x}$CoO$_{2}$, for which we have formerly established the in plane Na ordering and its three dimensional stacking from a combination of symmetry argume
We report $^{23}$Na and $^{59}$Co nuclear magnetic (NMR) and quadrupolar resonance (NQR) studies for the $x=2/3$ phase of the lamellar oxide Na$_{x}$CoO$_{2}$, which allowed us to establish reliably the atomic order of the Na layers and their stackin
The incidence of topology on the band structure and physical properties of layered compounds has been extensively studied in semimetals. How those evolve in presence of electronic correlations has been less investigated so far. In the sodium cobaltat
The importance of electronic correlation effects in the layered perovskite Sr$_2$RuO$_4$ is evidenced. To this end we use state-of-the-art LDA+DMFT (Local Density Approximation + Dynamical Mean-Field Theory) in the basis of Wannier functions to compu
We compute the phonon dispersion, density of states, and the Gruneisen parameters of bulk palladium in the combined density functional theory (DFT) and dynamical mean-field theory (DMFT). We find good agreement with experimental results for ground st