ﻻ يوجد ملخص باللغة العربية
We investigate how the kinetic energy acquired by a dense granular system driven by an external vibration depends on the input energy. Our focus is on the dependence of the granular behavior on two main parameters: frequency and vibration amplitude. We find that there exists an optimal forcing frequency, at which the system reaches the maximal kinetic energy: if the input energy is increased beyond such a threshold, the system dissipates more and more energy and recovers a colder and more viscous state. Quite surprisingly, the nonmonotonic behavior is found for vibration amplitudes which are sufficiently small to keep the system always in contact with the driving oscillating plate. Studying dissipative properties of the system, we unveil a striking difference between this nonmonotonic behavior and a standard resonance mechanism. This feature is also observed at the microscopic scale of the single-grain dynamics and can be interpreted as an instance of negative specific heat. An analytically solvable model based on a generalized forced-damped oscillator well reproduces the observed phenomenology, illustrating the role of the competing effects of forcing and dissipation.
We experimentally investigate the energy dissipation rate in sinusoidally driven boxes which are partly filled by granular material under conditions of weightlessness. We identify two different modes of granular dynamics, depending on the amplitude o
We employ numerical simulations to understand the evolution of elastic standing waves in disordered frictional disk systems, where the dispersion relations of rotational sound modes are analyzed in detail. As in the case of frictional particles on a
We examine the transmissibility of a simulated two-dimensional pack of frictionless disks formed by confining dilute disks in a shrinking, periodic box to the point of mechanical stability. Two opposite boundaries are then removed, thus allowing a se
We experimentally investigate the fluidization of a granular material subject to mechanical vibrations by monitoring the angular velocity of a vane suspended in the medium and driven by an external motor. On increasing the frequency we observe a re-e
Recent experiments with rotational diffusion of a probe in a vibrated granular media revealed a rich scenario, ranging from the dilute gas to the dense liquid with cage effects and an unexpected superdiffusive behavior at large times. Here we setup a