ﻻ يوجد ملخص باللغة العربية
Radiative cooling has recently revived due to its significant potential as an environmentally friendly cooling technology. However, the design of particle-matrix cooling nanocomposites was generally carried out via tedious trial-and-error approaches, and the atomistic physics for efficient radiative cooling was not well understood. In this work, we identify the atomistic metrics of Barium Sulfate (BaSO$_4$) nanocomposite, which is an ultra-efficient radiative cooling material, using a predictive first-principles approach coupled with Monte Carlo simulations. Our results show that BaSO$_4$-acrylic nanocomposites not only attain high total solar reflectance of 92.5% (0.28 - 4.0 um), but also simultaneously demonstrate high normal emittance of 96.0% in the sky window region (8 - 13 um), outperforming the commonly used $alpha$-quartz ($alpha$-SiO$_2$). We identify two pertinent characters of ultra-efficient radiative cooling paints: i) a balanced band gap and refractive index, which enables strong scattering while negating absorption in the solar spectrum, and ii) a sufficient number of infrared-active optical resonance phonon modes resulting in abundant Reststrahlen bands and high emissivity in the sky window. The first principles approach and the resulted physical insights in this work pave the way for further search of ultra-efficient radiative cooling materials.
The structural, elastic and electronic properties of ReN are investigated by first-principles calculations based on density functional theory. Two competing structures, i.e., CsCl-like and NiAs-like structures, are found and the most stable structure
The band structure, optical and defects properties of Ba_{2}TeO are systematically investigated using density functional theory with a view to understanding its potential as an optoelectronic or trans- parent conducting material. Ba_{2}TeO crystalliz
In the context of the search for environment-respectful, lead- and bismuth- free chemical compounds for devices such as actuators, SnTiO3 (ST) is investigated from first principles within DFT. Full geometry optimization provides a stable tetragonal s
We present a computationally efficient general first-principles based method for spin-lattice simulations for solids. Our method is based on a combination of atomistic spin dynamics and molecular dynamics, expressed through a spin-lattice Hamiltonian
A novel stable crystallographic structure is discovered in a variety of ABO3, ABF3 and A2O3 compounds (including materials of geological relevance, prototypes of multiferroics, exhibiting strong spin-orbit effects, etc...), via the use of first princ