ﻻ يوجد ملخص باللغة العربية
In this article we study a class of prescribed curvature problems on complete noncompact Riemannian manifolds. To be precise, we derive local $C^0$-estimate under an asymptotic condition which is in effect optimal, and prove the existence of complete conformal metrics with prescribed curvature functions. A key ingredient of our strategy is Aviles-McOwens result or its fully nonlinear version on the existence of complete conformal metrics with prescribed curvature functions on manifolds with boundary.
In this paper, by using monotonicity formulas for vector bundle-valued $p$-forms satisfying the conservation law, we first obtain general $L^2$ global rigidity theorems for locally conformally flat (LCF) manifolds with constant scalar curvature, unde
We consider the problem of finding complete conformal metrics with prescribed curvature functions of the Einstein tensor and of more general modified Schouten tensors. To achieve this, we reveal an algebraic structure of a wide class of fully nonline
The Ricci flow is an evolution system on metrics. For a given metric as initial data, its local existence and uniqueness on compact manifolds was first established by Hamilton cite{Ha1}. Later on, De Turck cite{De} gave a simplified proof. In the lat
We prove that a complete noncompact K{a}hler manifold $M^{n}$of positive bisectional curvature satisfying suitable growth conditions is biholomorphic to a pseudoconvex domain of {bf C}$^{n}$ and we show that the manifold is topologically {bf R}$^{2n}
In this paper we provide some local and global splitting results on complete Riemannian manifolds with nonnegative Ricci curvature. We achieve the splitting through the analysis of some pointwise inequalities of Modica type which hold true for every