ﻻ يوجد ملخص باللغة العربية
In the conventional robust $T$-colluding private information retrieval (PIR) system, the user needs to retrieve one of the possible messages while keeping the identity of the requested message private from any $T$ colluding servers. Motivated by the possible heterogeneous privacy requirements for different messages, we consider the $(N, T_1:K_1, T_2:K_2)$ two-level PIR system, where $K_1$ messages need to be retrieved privately against $T_1$ colluding servers, and all the messages need to be retrieved privately against $T_2$ colluding servers where $T_2leq T_1$. We obtain a lower bound to the capacity by proposing two novel coding schemes, namely the non-uniform successive cancellation scheme and the non-uniform block cancellation scheme. A capacity upper bound is also derived. The gap between the upper bound and the lower bounds is analyzed, and shown to vanish when $T_1=T_2$. Lastly, we show that the upper bound is in general not tight by providing a stronger bound for a special setting.
We consider the problem of Private Information Retrieval with Private Side Information (PIR-PSI), wherein a user wants to retrieve a file from replication based non-colluding databases by using the prior knowledge of a subset of the files stored on t
We consider the fundamental tradeoff between the storage cost and the download cost in private information retrieval systems, without any explicit structural restrictions on the storage codes, such as maximum distance separable codes or uncoded stora
A new computational private information retrieval (PIR) scheme based on random linear codes is presented. A matrix of messages from a McEliece scheme is used to query the server with carefully chosen errors. The server responds with the sum of the sc
In a private information retrieval (PIR) system, the user needs to retrieve one of the possible messages from a set of storage servers, but wishes to keep the identity of requested message private from any given server. Existing efforts in this area
We investigate the problem of semantic private information retrieval (semantic PIR). In semantic PIR, a user retrieves a message out of $K$ independent messages stored in $N$ replicated and non-colluding databases without revealing the identity of th