ترغب بنشر مسار تعليمي؟ اضغط هنا

Functional renormalization group study of the Kitaev-$Gamma$ model on the honeycomb lattice and emergent incommensurate magnetic correlations

146   0   0.0 ( 0 )
 نشر من قبل Finn Lasse Buessen
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The theoretical inception of the Kitaev honeycomb model has had defining influence on the experimental hunt for quantum spin liquids, bringing unprecedented focus onto the synthesis of materials with bond-directional interactions. Numerous Kitaev materials, which are believed to harbor ground states parametrically close to the Kitaev spin liquid, have been investigated since. Yet, in these materials the Kitaev interaction often comes hand in hand with off-diagonal $Gamma$ interactions -- with the competition of the two potentially giving rise to a magnetically ordered ground state. In an attempt to aid future material investigations, we study the phase diagram of the spin-1/2 Kitaev-$Gamma$ model on the honeycomb lattice. Employing a pseudofermion functional renormalization group approach which directly operates in the thermodynamic limit and captures the joint effect of thermal and quantum fluctuations, we unveil the existence of extended parameter regimes with emergent incommensurate magnetic correlations at finite temperature. We supplement our results with additional calculations on a finite cylinder geometry to investigate the impact of periodic boundary conditions on the incommensurate order, thereby providing a perspective on previous numerical studies on finite systems.



قيم البحث

اقرأ أيضاً

We consider the quasi-two-dimensional pseudo-spin-1/2 Kitaev - Heisenberg model proposed for A2IrO3 (A=Li, Na) compounds. The spin-wave excitation spectrum, the sublattice magnetization, and the transition temperatures are calculated in the random ph ase approximation (RPA) for four different ordered phases, observed in the parameter space of the model: antiferomagnetic, stripe, ferromagnetic, and zigzag phases. The N{e}el temperature and temperature dependence of the sublattice magnetization are compared with the experimental data on Na2IrO3.
It is widely accepted that topological superconductors can only have an effective interpretation in terms of curved geometry rather than gauge fields due to their charge neutrality. This approach is commonly employed in order to investigate their pro perties, such as the behaviour of their energy currents. Nevertheless, it is not known how accurately curved geometry can describe actual microscopic models. Here, we demonstrate that the low-energy properties of the Kitaev honeycomb lattice model, a topological superconductor that supports localised Majorana zero modes at its vortex excitations, are faithfully described in terms of Riemann-Cartan geometry. In particular, we show analytically that the continuum limit of the model is given in terms of the Majorana version of the Dirac Hamiltonian coupled to both curvature and torsion. We numerically establish the accuracy of the geometric description for a wide variety of couplings of the microscopic model. Our work opens up the opportunity to accurately predict dynamical properties of the Kitaev model from its effective geometric description.
We calculate magnon dispersions and damping in the Kitaev-Heisenberg model with an off-diagonal exchange $Gamma$ and isotropic third-nearest-neighbor interaction $J_3$ on a honeycomb lattice. This model is relevant to a description of the magnetic pr operties of iridium oxides $alpha$-Li$_2$IrO$_3$ and Na$_2$IrO$_3$, and Ru-based materials such as $alpha$-RuCl$_3$. We use an unconventional parametrization of the spin-wave expansion, in which each Holstein-Primakoff boson is represented by two conjugate hermitian operators. This approach gives us an advantage over the conventional one in identifying parameter regimes where calculations can be performed analytically. Focusing on the parameter regime with the zigzag spin pattern in the ground state that is consistent with experiments, we demonstrate that one such region is $Gamma = K>0$, where $K$ is the Kitaev coupling. Within our approach we are able to obtain explicit analytical expressions for magnon energies and eigenstates and go beyond the standard linear spin-wave theory approximation by calculating magnon damping and demonstrating its role in the dynamical structure factor. We show that the magnon damping effects in both Born and self-consistent approximations are very significant, underscoring the importance of non-linear magnon coupling in interpreting broad features in the neutron-scattering spectra.
The channel-decomposed functional renormalization group (FRG) approach, most recently in the variant of truncated-unity-(TU-)FRG, has so far been used for various two-dimensional model systems. Yet, for many interesting material systems the third spa tial dimension is of clear relevance. Therefore FRG schemes working in three spatial dimensions (3D) are definitely on the wishlist. Here we demonstrate that a 3D TUFRG scheme can be set up in straightforward extension of previous 2D codes and gives physically sensible results with affordable numerical effort, both regarding the qualitative as well as the quantitative description. The computed phase diagram of the three-dimensional Hubbard model at half filling or perfect nesting shows a phase transition to a ((pi,pi,pi))-ordered antiferromagnetic ground state for repulsive interactions at an energy scale that compares well with other numerical approaches in the literature. Furthermore, the method allowed us to detect a (d)-wave pairing and a concurring ((pi,pi,0)) antiferromagnetic ground state in the hole doped Hubbard model.
The emergence of the Haldane Chern insulator state due to strong short range repulsive interactions in the half-filled fermionic spinless honeycomb lattice model has been proposed and challenged with different methods and yet it still remains controv ersial. In this work we revisit the problem using the infinite density matrix renormalization group method and report numerical evidence supporting i) the absence of the Chern insulator state, ii) two previously unnoticed charge ordered phases and iii) the existence and stability of all the non-topological competing orders that were found previously within mean field. In addition, we discuss the nature of the corresponding phase transitions based on our numerical data. Our work establishes the phase diagram of the half-filled honeycomb lattice model tilting the balance towards the absence of a Chern insulator phase for this model.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا