ترغب بنشر مسار تعليمي؟ اضغط هنا

The relativity of indeterminacy

79   0   0.0 ( 0 )
 نشر من قبل Flavio Del Santo
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A long-standing tradition, largely present in both the physical and the philosophical literature, regards the advent of (special) relativity -- with its block-universe picture -- as the failure of any indeterministic program in physics. On the contrary, in this paper, we note that upholding reasonable principles of finiteness of information hints at a picture of the physical world that should be both relativistic and indeterministic. We thus rebut the block-universe picture by assuming that fundamental indeterminacy itself should as well be regarded as a relational property when considered in a relativistic scenario. We discuss the consequence that this view may have when correlated randomness is introduced, both in the classical case and in the quantum one.



قيم البحث

اقرأ أيضاً

One of the most basic notions in physics is the partitioning of a system into subsystems, and the study of correlations among its parts. In this work, we explore these notions in the context of quantum reference frame (QRF) covariance, in which this partitioning is subject to a symmetry constraint. We demonstrate that different reference frame perspectives induce different sets of subsystem observable algebras, which leads to a gauge-invariant, frame-dependent notion of subsystems and entanglement. We further demonstrate that subalgebras which commute before imposing the symmetry constraint can translate into non-commuting algebras in a given QRF perspective after symmetry imposition. Such a QRF perspective does not inherit the distinction between subsystems in terms of the corresponding tensor factorizability of the kinematical Hilbert space and observable algebra. Since the condition for this to occur is contingent on the choice of QRF, the notion of subsystem locality is frame-dependent.
193 - Ken Wharton 2012
When we want to predict the future, we compute it from what we know about the present. Specifically, we take a mathematical representation of observed reality, plug it into some dynamical equations, and then map the time-evolved result back to real-w orld predictions. But while this computational process can tell us what we want to know, we have taken this procedure too literally, implicitly assuming that the universe must compute itself in the same manner. Physical theories that do not follow this computational framework are deemed illogical, right from the start. But this anthropocentric assumption has steered our physical models into an impossible corner, primarily because of quantum phenomena. Meanwhile, we have not been exploring other models in which the universe is not so limited. In fact, some of these alternate models already have a well-established importance, but are thought to be mathematical tricks without physical significance. This essay argues that only by dropping our assumption that the universe is a computer can we fully develop such models, explain quantum phenomena, and understand the workings of our universe. (This essay was awarded third prize in the 2012 FQXi essay contest; a new afterword compares and contrasts this essay with Robert Spekkens first prize entry.)
317 - H. Nikolic 2017
Most physicists do not have patience for reading long and obscure interpretation arguments and disputes. Hence, to attract attention of a wider physics community, in this paper various old and new aspects of quantum interpretations are explained in a concise and simple (almost trivial) form. About the Copenhagen interpretation, we note that there are several differen
273 - M.P. Seevinck 2010
This white paper aims to identify an open problem in Quantum Physics and the Nature of Reality --namely whether quantum theory and special relativity are formally compatible--, to indicate what the underlying issues are, and put forward ideas about how the problem might be addressed.
94 - G. Lefevre , G. Condon , I. Riou 2017
We present two projects aiming to probe key aspects of the theory of General Relativity with high-precision quantum sensors. These projects use cold-atom interferometry with the aim of measuring gravitational waves and testing the equivalence princip le. To detect gravitational waves, a large multi-sensor demonstrator is currently under construction that will exploit correlations between three atom interferometers spread along a 200 m optical cavity. Similarly, a test of the weak equivalence principle is currently underway using a compact and mobile dual-species interferometer, which will serve as a prototype for future high-precision tests onboard an orbiting satellite. We present recent results and improvements related to both projects.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا