ترغب بنشر مسار تعليمي؟ اضغط هنا

First phase space portrait of a hierarchical stellar structure in the Milky Way

61   0   0.0 ( 0 )
 نشر من قبل Emanuele Dalessandro
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the first detailed observational picture of a possible ongoing massive cluster hierarchical assembly in the Galactic disk as revealed by the analysis of the stellar full phase-space (3D positions and kinematics and spectro-photometric properties) of an extended area ($6^{circ}$ diameter) surrounding the well-known $it h$ and $chi$ Persei double stellar cluster in the Perseus Arm. Gaia-EDR3 shows that the area is populated by seven co-moving clusters, three of which were previously unknown, and by an extended and quite massive ($Msim10^5 M_{odot}$) halo. All stars and clusters define a complex structure with evidence of possible mutual interactions in the form of intra-cluster over-densities and/or bridges. They share the same chemical abundances (half-solar metallicity) and age ($tsim20$ Myr) within a small confidence interval and the stellar density distribution of the surrounding diffuse stellar halo resembles that of a cluster-like stellar system. The combination of these evidences suggests that stars distributed within a few degrees from $it h$ and $chi$ Persei are part of a common, sub-structured stellar complex that we named LISCA I. Comparison with results obtained through direct $N$-body simulations suggest that LISCA I may be at an intermediate stage of an ongoing cluster assembly that can eventually evolve in a relatively massive (a few $10^5 M_{odot}$) stellar system. We argue that such cluster formation mechanism may be quite efficient in the Milky Way and disk-like galaxies and, as a consequence, it has a relevant impact on our understanding of cluster formation efficiency as a function of the environment and redshift.



قيم البحث

اقرأ أيضاً

247 - Sergey E. Koposov 2009
The narrow GD-1 stream of stars, spanning 60 deg on the sky at a distance of ~10 kpc from the Sun and ~15 kpc from the Galactic center, is presumed to be debris from a tidally disrupted star cluster that traces out a test-particle orbit in the Milky Way halo. We combine SDSS photometry, USNO-B astrometry, and SDSS and Calar Alto spectroscopy to construct a complete, empirical 6-dimensional phase-space map of the stream. We find that an eccentric orbit in a flattened isothermal potential describes this phase-space map well. Even after marginalizing over the stream orbital parameters and the distance from the Sun to the Galactic center, the orbital fit to GD-1 places strong constraints on the circular velocity at the Suns radius V_c=224 pm 13 km/s and total potential flattening q_Phi=0.87^{+0.07}_{-0.04}. When we drop any informative priors on V_c the GD-1 constraint becomes V_c=221 pm 18 km/s. Our 6-D map of GD-1 therefore yields the best current constraint on V_c and the only strong constraint on q_Phi at Galactocentric radii near R~15 kpc. Much, if not all, of the total potential flattening may be attributed to the mass in the stellar disk, so the GD-1 constraints on the flattening of the halo itself are weak: q_{Phi,halo}>0.89 at 90% confidence. The greatest uncertainty in the 6-D map and the orbital analysis stems from the photometric distances, which will be obviated by Gaia.
We present a new theoretical population synthesis model (the Galaxy Model) to examine and deal with large amounts of data from surveys of the Milky Way and to decipher the present and past structure and history of our own Galaxy. We assume the Galaxy to consist of a superposition of many composite stellar populations belonging to the thin and thick disks, the stellar halo and the bulge, and to be surrounded by a single dark matter halo component. A global model for the Milky Ways gravitational potential is built up self-consistently with the density profiles from the Poisson equation. In turn, these density profiles are used to generate synthetic probability distribution functions (PDFs) for the distribution of stars in colour-magnitude diagrams (CMDs). Finally, the gravitational potential is used to constrain the stellar kinematics by means of the moment method on a (perturbed)-distribution function. Spiral arms perturb the axisymmetric disk distribution functions in the linear response framework of density-wave theory where we present an analytical formula of the so-called `reduction factor using Hypergeometric functions. Finally, we consider an analytical non-axisymmetric model of extinction and an algorithm based on the concept of probability distribution function to handle colour magnitude diagrams with a large number of stars. A genetic algorithm is presented to investigate both the photometric and kinematic parameter space. This galaxy model represents the natural framework to reconstruct the structure of the Milky Way from the heterogeneous data set of surveys such as Gaia-ESO, SEGUE, APOGEE2, RAVE and the Gaia mission.
We explore the origin of a population of stars recently detected in the inner parsec of the Milky Way Nuclear Cluster (NC), which exhibit sub-solar metallicity and a higher rotation compared to the dominant population. Using state-of-the-art $N$-body simulations, we model the infall of a massive stellar system into the Galactic center, both of Galactic and extra-galactic origin. We show that the newly discovered population can either be the remnant of a massive star cluster formed a few kpc away from the Galactic center (Galactic scenario) or be accreted from a dwarf galaxy originally located at 10-100 kpc (extragalactic scenario) and that reached the Galactic center 3-5 Gyr ago. A comparison between our models and characteristic Galactocentric distance and metallicity distributions of Milky Way satellites and globular clusters favours the Galactic scenario. A comparison with clusters associated with the Enceladus-Sausage, Sequoia, Sagittarius and Canis Major structures suggests that the progenitor of the observed metal-poor substructure formed in-situ rather than being accreted.
83 - Juntai Shen 2020
The Milky Way is a spiral galaxy with the Schechter characteristic luminosity $L_*$, thus an important anchor point of the Hubble sequence of all spiral galaxies. Yet the true appearance of the Milky Way has remained elusive for centuries. We review the current best understanding of the structure and kinematics of our home galaxy, and present an updated scientifically accurate visualization of the Milky Way structure with almost all components of the spiral arms, along with the COBE image in the solar perspective. The Milky Way contains a strong bar, four major spiral arms, and an additional arm segment (the Local arm) that may be longer than previously thought. The Galactic boxy bulge that we observe is mostly the peanut-shaped central bar viewed nearly end-on with a bar angle of 25-30 degrees from the Sun-Galactic center line. The bar transitions smoothly from a central peanut-shaped structure to an extended thin part that ends around R ~ 5 kpc. The Galactic bulge/bar contains ~ 30-40% of the total stellar mass in the Galaxy. Dynamical modelling of both the stellar and gas kinematics yields a bar pattern rotation speed of ~ 35-40 km/s/kpc, corresponding to a bar rotation period of ~ 160-180 Myr. From a galaxy formation point of view, our Milky Way is probably a pure-disk galaxy with little room for a significant merger-made, classical spheroidal bulge, and we give a number of reasons why this is the case.
89 - Xiangcheng Ma 2016
We study the structure, age and metallicity gradients, and dynamical evolution using a cosmological zoom-in simulation of a Milky Way-mass galaxy from the Feedback in Realistic Environments project. In the simulation, stars older than 6 Gyr were form ed in a chaotic, bursty mode and have the largest vertical scale heights (1.5-2.5 kpc) by z=0, while stars younger than 6 Gyr were formed in a relatively calm, stable disk. The vertical scale height increases with stellar age at all radii, because (1) stars that formed earlier were thicker at birth, and (2) stars were kinematically heated to an even thicker distribution after formation. Stars of the same age are thicker in the outer disk than in the inner disk (flaring). These lead to positive vertical age gradients and negative radial age gradients. The radial metallicity gradient is neg- ative at the mid-plane, flattens at larger disk height |Z|, and turns positive above |Z|~1.5kpc. The vertical metallicity gradient is negative at all radii, but is steeper at smaller radii. These trends broadly agree with observations in the Milky Way and can be naturally understood from the age gradients. The vertical stellar density profile can be well-described by two components, with scale heights 200-500 pc and 1-1.5 kpc, respectively. The thick component is a mix of stars older than 4 Gyr which formed through a combination of several mechanisms. Our results also demonstrate that it is possible to form a thin disk in cosmological simulations even with strong stellar feedback.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا