ﻻ يوجد ملخص باللغة العربية
Recently four-point holographic correlators with arbitrary external BPS operators were constructively derived in [1,2] at tree-level for maximally superconformal theories. In this paper, we capitalize on these theoretical data, and perform a detailed study of their analytic properties. We point out that these maximally supersymmetric holographic correlators exhibit a hidden dimensional reduction structure `a la Parisi and Sourlas. This emergent structure allows the correlators to be compactly expressed in terms of only scalar exchange diagrams in a dimensionally reduced spacetime, where formally both the AdS and the sphere factors have four dimensions less. We also demonstrate the superconformal properties of holographic correlators under the chiral algebra and topological twistings. For $AdS_5times S^5$ and $AdS_7times S^4$, we obtain closed form expressions for the meromorphic twisted correlators from the maximally R-symmetry violating limit of the holographic correlators. The results are compared with independent field theory computations in 4d $mathcal{N}=4$ SYM and the 6d $(2,0)$ theory, finding perfect agreement. For $AdS_4times S^7$, we focus on an infinite family of near-extremal four-point correlators, and extract various protected OPE coefficients from supergravity. These OPE coefficients provide new holographic predictions to be matched by future supersymmetric localization calculations. In deriving these results, we also develop many technical tools which should have broader applicability beyond studying holographic correlators.
In this work, we study the $frac{1}{8}$-BPS heavy-heavy-light-light correlators in the D1D5 CFT and its holographic dual. On the field theory side, we compute the fermionic four-point correlators at the free orbifold point. On the dual gravity side,
We continue the study of n-point correlation functions of half-BPS protected operators in N=4 super-Yang-Mills theory, in the limit where the positions of the adjacent operators become light-like separated. We compute the l-loop corrections by making
We study 2-point correlation functions for scalar operators in position space through holography including bulk cubic couplings as well as higher curvature couplings to the square of the Weyl tensor. We focus on scalar operators with large conformal
We reexamine the results on the global properties of T-duality for principal circle bundles in the context of a dimensionally reduced Gysin sequence. We will then construct a Gysin sequence for principal torus bundles and examine the consequences. In
We consider weakly-coupled QFT in AdS at finite temperature. We compute the holographic thermal two-point function of scalar operators in the boundary theory. We present analytic expressions for leading corrections due to local quartic interactions i