ﻻ يوجد ملخص باللغة العربية
The paper considers subspaces of the strictly upper triangular matrices, which are stable under Lie bracket with any upper triangular matrix. These subspaces are called ad-nilpotent ideals and there are Catalan number of such subspaces. Each ad-nilpotent ideal meets a unique largest nilpotent orbit in the Lie algebra of all matrices. The main result of the paper is that under an equivalence relation on ad-nilpotent ideals studied by Mizuno and others, the equivalence classes are the ad-nilpotent ideals with the same largest nilpotent orbit. We include two applications of the result, one to the higher vanishing of cohomology groups of vector bundles on the flag variety and another to the Kazhdan-Lusztig cells in the affine Weyl group of the symmetric group. Finally, some combinatorial results are discussed.
We count the number of strictly positive $B$-stable ideals in the nilradical of a Borel subalgebra and prove that the minimal roots of any $B$-stable ideal are conjugate by an element of the Weyl group to a subset of the simple roots. We also compute
Let G be a simple algebraic group over the complex numbers containing a Borel subgroup B. Given a B-stable ideal I in the nilradical of the Lie algebra of B, we define natural numbers $m_1, m_2, ..., m_k$ which we call ideal exponents. We then propos
We study the category of representations of $mathfrak{sl}_{m+2n}$ in positive characteristic, whose p-character is a nilpotent whose Jordan type is the two-row partition (m+n,n). In a previous paper with Anno, we used Bezrukavnikov-Mirkovic-Rumynins
In type A we find equivalences of geometries arising in three settings: Nakajimas (``framed) quiver varieties, conjugacy classes of matrices and loop Grassmannians. These are now all given by explicit formulas. As an application we provide a geometri
Let $i$ be a reduced expression of the longest element in the Weyl group of type $A$, which is adapted to a Dynkin quiver with a single sink. We present a simple description of the crystal embedding of Young tableaux of arbitrary shape into $i$-Luszt