ﻻ يوجد ملخص باللغة العربية
Contention-based wireless channel access methods like CSMA and ALOHA paved the way for the rise of the Internet of Things in industrial applications (IIoT). However, to cope with increasing demands for reliability and throughput, several mostly TDMA-based protocols like IEEE 802.15.4 and its extensions were proposed. Nonetheless, many of these IIoT-protocols still require contention-based communication, e.g., for slot allocation and broadcast transmission. In many cases, subtle but hidden patterns characterize this secondary traffic. Present contention-based protocols are unaware of these hidden patterns and can therefore not exploit this information. Especially in dense networks, they often do not provide sufficient reliability for primary traffic, e.g., they are unable to allocate transmission slots in time. In this paper, we propose QMA, a contention-based multiple access scheme based on Q-learning, which dynamically adapts transmission times to avoid collisions by learning patterns in the contention-based traffic. QMA is designed to be resource-efficient and targets small embedded devices. We show that QMA solves the hidden node problem without the additional overhead of RTS / CTS messages and verify the behaviour of QMA in the FIT IoT-LAB testbed. Finally, QMAs scalability is studied by simulation, where it is used for GTS allocation in IEEE 802.15.4 DSME. Results show that QMA considerably increases reliability and throughput in comparison to CSMA/CA, especially in networks with a high load.
This paper proposes and experimentally demonstrates a first wireless local area network (WLAN) system that jointly exploits physical-layer network coding (PNC) and multiuser decoding (MUD) to boost system throughput. We refer to this multiple access
We study a problem of scheduling real-time traffic with hard delay constraints in an unreliable wireless channel. Packets arrive at a constant rate to the network and have to be delivered within a fixed number of slots in a fading wireless channel. F
Platooning strategy is an important part of autonomous driving technology. Due to the limited resource of autonomous vehicles in platoons, mobile edge computing (MEC) is usually used to assist vehicles in platoons to obtain useful information, increa
Despite numerous advantages, non-orthogonal multiple access (NOMA) technique can bring additional interference for the neighboring ultra-dense networks if the power consumption of the system is not properly optimized. While targeting on the green com
In this paper, we propose a new paradigm in designing and realizing energy efficient wireless indoor access networks, namely, a hybrid system enabled by traditional RF access, such as WiFi, as well as the emerging visible light communication (VLC). V