ترغب بنشر مسار تعليمي؟ اضغط هنا

Coronal Heating Law Constrained by Microwave Gyroresonant Emission

115   0   0.0 ( 0 )
 نشر من قبل Gregory Fleishman
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The question why the solar corona is much hotter than the visible solar surface still puzzles solar researchers. Most theories of the coronal heating involve a tight coupling between the coronal magnetic field and the associated thermal structure. This coupling is based on two facts: (i) the magnetic field is the main source of the energy in the corona and (ii) the heat transfer preferentially happens along the magnetic field, while is suppressed across it. However, most of the information about the coronal heating is derived from analysis of EUV or soft X-ray emissions, which are not explicitly sensitive to the magnetic field. This paper employs another electromagnetic channel -- the sunspot-associated microwave gyroresonant emission, which is explicitly sensitive to both the magnetic field and thermal plasma. We use nonlinear force-free field reconstructions of the magnetic skeleton dressed with a thermal structure as prescribed by a field-aligned hydrodynamics to constrain the coronal heating model. We demonstrate that the microwave gyroresonant emission is extraordinarily sensitive to details of the coronal heating. We infer heating model parameters consistent with observations.



قيم البحث

اقرأ أيضاً

115 - C. S. Ng , A. Bhattacharjee 2011
An analytical and numerical treatment is given of a constrained version of the tectonics model developed by Priest, Heyvaerts, & Title [2002]. We begin with an initial uniform magnetic field ${bf B} = B_0 hat{bf z}$ that is line-tied at the surfaces $z = 0$ and $z = L$. This initial configuration is twisted by photospheric footpoint motion that is assumed to depend on only one coordinate ($x$) transverse to the initial magnetic field. The geometric constraints imposed by our assumption precludes the occurrence of reconnection and secondary instabilities, but enables us to follow for long times the dissipation of energy due to the effects of resistivity and viscosity. In this limit, we demonstrate that when the coherence time of random photospheric footpoint motion is much smaller by several orders of magnitude compared with the resistive diffusion time, the heating due to Ohmic and viscous dissipation becomes independent of the resistivity of the plasma. Furthermore, we obtain scaling relations that suggest that even if reconnection and/or secondary instabilities were to limit the build-up of magnetic energy in such a model, the overall heating rate will still be independent of the resistivity.
The heating of the solar chromosphere and corona to the observed high temperatures, imply the presence of ongoing heating that balances the strong radiative and thermal conduction losses expected in the solar atmosphere. It has been theorized for dec ades that the required heating mechanisms of the chromospheric and coronal parts of the active regions, quiet-Sun, and coronal holes are associated with the solar magnetic fields. However, the exact physical process that transport and dissipate the magnetic energy which ultimately leads to the solar plasma heating are not yet fully understood. The current understanding of coronal heating relies on two main mechanism: reconnection and MHD waves that may have various degrees of importance in different coronal regions. In this review we focus on recent advances in our understanding of MHD wave heating mechanisms. First, we focus on giving an overview of observational results, where we show that different wave modes have been discovered in the corona in the last decade, many of which are associated with a significant energy flux, either generated in situ or pumped from the lower solar atmosphere. Afterwards, we summarise the recent findings of numerical modelling of waves, motivated by the observational results. Despite the advances, only 3D MHD models with Alfven wave heating in an unstructured corona can explain the observed coronal temperatures compatible with the quiet Sun, while 3D MHD wave heating models including cross-field density structuring are not yet able to account for the heating of coronal loops in active regions to their observed temperature.
To simulate the energy balance of coronal plasmas on macroscopic scales, we often require the specification of the coronal heating mechanism in some functional form. To go beyond empirical formulations and to build a more physically motivated heating function, we investigate the wave-turbulence-driven (WTD) phenomenology for the heating of closed coronal loops. Our implementation is designed to capture the large-scale propagation, reflection, and dissipation of wave turbulence along a loop. The parameter space of this model is explored by solving the coupled WTD and hydrodynamic evolution in 1D for an idealized loop. The relevance to a range of solar conditions is also established by computing solutions for over one hundred loops extracted from a realistic 3D coronal field. Due to the implicit dependence of the WTD heating model on loop geometry and plasma properties along the loop and at the footpoints, we find that this model can significantly reduce the number of free parameters when compared to traditional empirical heating models, and still robustly describe a broad range of quiet-sun and active region conditions. The importance of the self-reflection term in producing relatively short heating scale heights and thermal nonequilibrium cycles is also discussed.
Magnetic reconnection and particle acceleration due to the kink instability in twisted coronal loops can be a viable scenario for confined solar flares. Detailed investigation of this phenomenon requires reliable methods for observational detection o f magnetic twist in solar flares, which may not be possible solely through extreme UV and soft X-ray thermal emission. Polarisation of microwave emission in flaring loops can be used as one of the detection criteria. The aim of this study is to investigate the effect of magnetic twist in flaring coronal loops on the polarisation of gyro-synchrotron microwave (GSMW) emission, and determine whether it could provide a means for magnetic twist detection. We use time-dependent magnetohydrodynamic and test-particle models developed using LARE3D and GCA codes to investigate twisted coronal loops relaxing following the kink-instability. Synthetic GSMW emission maps (I and V Stokes components) are calculated using GX simulator. It is found that flaring twisted coronal loops produce GSMW radiation with a gradient of circular polarisation across the loop. However, these patterns may be visible only for a relatively short period of time due to fast magnetic reconfiguration after the instability. Their visibility also depends on the orientation and position of the loop on solar disk. Typically, it would be difficult to see these characteristic polarisation pattern in a twisted loop seen from the top (close to the centre of the solar disk), but easier in a twisted loop seen from the side (i.e. observed very close to the limb).
179 - N. A. Murphy , J. C. Raymond , 2011
We perform a time-dependent ionization analysis to constrain plasma heating requirements during a fast partial halo coronal mass ejection (CME) observed on 2000 June 28 by the Ultraviolet Coronagraph Spectrometer (UVCS) aboard the Solar and Heliosphe ric Observatory (SOHO). We use two methods to derive densities from the UVCS measurements, including a density sensitive O V line ratio at 1213.85 and 1218.35 Angstroms, and radiative pumping of the O VI 1032,1038 doublet by chromospheric emission lines. The most strongly constrained feature shows cumulative plasma heating comparable to or greater than the kinetic energy, while features observed earlier during the event show cumulative plasma heating of order or less than the kinetic energy. SOHO Michelson Doppler Imager (MDI) observations are used to estimate the active region magnetic energy. We consider candidate plasma heating mechanisms and provide constraints when possible. Because this CME was associated with a relatively weak flare, the contribution by flare energy (e.g., through thermal conduction or energetic particles) is probably small; however, the flare may have been partially behind the limb. Wave heating by photospheric motions requires heating rates significantly larger than those previously inferred for coronal holes, but the eruption itself could drive waves which heat the plasma. Heating by small-scale reconnection in the flux rope or by the CME current sheet is not significantly constrained. UVCS line widths suggest that turbulence must be replenished continually and dissipated on time scales shorter than the propagation time in order to be an intermediate step in CME heating.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا