ترغب بنشر مسار تعليمي؟ اضغط هنا

Coherent control mechanisms of Penning and associative ionization in cold He$^*({2}^3text{S})$-He$^*({2}^3text{S})$ reactive scattering

109   0   0.0 ( 0 )
 نشر من قبل Juan Jos\\'e Omiste
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We explore coherent control of Penning and associative ionization in cold collisions of metastable He$^*({2}^3text{S})$ atoms via the quantum interference between different states of the He$_2^*$ collision complex. By tuning the preparation coefficients of the initial atomic spin states, we can benefit from the quantum interference between molecular channels to maximize or minimize the cross sections for Penning and associative ionization. In particular, we find that we can enhance the ionization ratio by 30% in the cold regime. This work is significant for the coherent control of chemical reactions in the cold and ultracold regime.



قيم البحث

اقرأ أيضاً

Producing positronium (Ps) in the metastable $2^3text{S}$ state is of interest for various applications in fundamental physics. We report here about an experiment in which Ps atoms are produced in this long-lived state by spontaneous radiative decay of Ps excited to the $3^3text{P}$ level manifold. The Ps cloud excitation is obtained with a UV laser pulse in an experimental vacuum chamber in presence of guiding magnetic field of 25 mT and an average electric field of 300 V/cm. The indication of the $2^3text{S}$ state production is obtained from a novel analysis technique of single-shot positronium annihilation lifetime spectra. Its production efficiency relative to the total amount of formed Ps is evaluated by fitting a simple rate equations model to the experimental data and found to be $ (2.1 pm 1.3) , % $.
Coherent control of reactive atomic and molecular collision processes remains elusive experimentally due to quantum interference-based requirements. Here, with insights from symmetry conditions, a viable method for controlling Penning and Associative ionization in atomic collisions is proposed. Computational applications to He$^*({}^3text{S})$-Li(${^2text{S}}$) and Ne$^*{}(^3text{P}_2$)-Ar($^1text{S}_0$) show extensive control over the ionization processes under experimentally feasible conditions.
The fraction of the longitudinal momentum of ${}^3text{He}$ that is carried by the isovector combination of $u$ and $d$ quarks is determined using lattice QCD for the first time. The ratio of this combination to that in the constituent nucleons is fo und to be consistent with unity at the few-percent level from calculations with quark masses corresponding to $m_pisim 800$ MeV, extrapolated to the physical quark masses. This constraint is consistent with, and significantly more precise than, determinations from global nuclear parton distribution function fits. Including the lattice QCD determination of the momentum fraction in the nNNPDF global fitting framework results in the uncertainty on the isovector momentum fraction ratio being reduced by a factor of 2.5, and thereby enables a more precise extraction of the $u$ and $d$ parton distributions in ${}^3text{He}$.
A general formalism is used to express the long-range potential energies in inverse powers of the separation distance between two like atomic or molecular systems with $P$ symmetries. The long-range molecular interaction coefficients are calculated f or the molecular symmetries $Delta$, $Pi$, and $Sigma$, arising from the following interactions: He($2 ^1P$)--He($2 ^1P$), He($2 ^1P$)--He($2 ^3P$), and He($2 ^3P$)--He($2 ^3P$). The electric quadrupole-quadrupole term, $C_{5}$, the van der Waals (dispersion) term $C_{6}$, and higher-order terms, $C_{8}$, and $C_{10}$, are calculated textit{ab initio} using accurate variational wave functions in Hylleraas coordinates with finite nuclear mass effects. A comparison is made with previously published results where available.
Acene molecules (anthracene, tetracene, pentacene) and fullerene (C$_{60}$) are embedded in He nanodroplets (He$_N$) and probed by EUV synchrotron radiation. When resonantly exciting the He nanodroplets, the embedded molecules M are efficiently ioniz ed by the Penning reaction $mathrm{He}_N^*+mathrm{M}rightarrowmathrm{He}_N + mathrm{M}^+ + e^-$. However, the Penning electron spectra are broad and structureless -- showing no resemblance neither with those measured by binary Penning collisions, nor with those measured for dopants bound to the He droplet surface. The similarity of all four spectra indicates that electron spectra of embedded species are substantially altered by electron-He scattering. Simulations based on elastic binary electron-He collisions qualitatively reproduce the measured spectra, but require the assumption of unexpectedly large He droplets.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا