ﻻ يوجد ملخص باللغة العربية
We study a class of off-diagonal quasiperiodic hopping models described by one-dimensional Su-Schrieffer-Heeger chain with quasiperiodic modulations. We unveil a general dual-mapping relation in parameter space of the dimerization strength $lambda$ and the quasiperiodic modulation strength $V$, regardless of the specific details of the quasiperiodic modulation. Moreover, we demonstrated semi-analytically and numerically that under the specific quasiperiodic modulation, quantum criticality can emerge and persist in a wide parameter space. These unusual properties provides a distinctive paradigm compared with the diagonal quasiperiodic systems.
We study a non-Hermitian AA model with the long-range hopping, $1/r^a$, and different choices of the quasi-periodic parameters $beta$ to be the member of the metallic mean family. We find that when the power-law exponent is in the $a<1$ regime, the s
We study the many-body localization (MBL) transition of Floquet eigenstates in a driven, interacting fermionic chain with an incommensurate Aubry-Andr{e} potential and a time-periodic hopping amplitude as a function of the drive frequency $omega_D$ u
Off-diagonal Aubry-Andr{e} (AA) model has recently attracted a great deal of attention as they provide condensed matter realization of topological phases. We numerically study a generalized off-diagonal AA model with p-wave superfluid pairing in the
We study a one-dimensional quasiperiodic system described by the off-diagonal Aubry-Andr{e} model and investigate its phase diagram by using the symmetry and the multifractal analysis. It was shown in a recent work ({it Phys. Rev. B} {bf 93}, 205441
We investigate the nonequilibrium dynamics of the one-dimension Aubry-Andr{e}-Harper model with $p$-wave superconductivity by changing the potential strength with slow and sudden quench. Firstly, we study the slow quench dynamics from localized phase