ترغب بنشر مسار تعليمي؟ اضغط هنا

A min-max regret approach for the Steiner Tree Problem with Interval Costs

108   0   0.0 ( 0 )
 نشر من قبل Iago Carvalho M.Sc.
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Let G=(V,E) be a connected graph, where V and E represent, respectively, the node-set and the edge-set. Besides, let Q subseteq V be a set of terminal nodes, and r in Q be the root node of the graph. Given a weight c_{ij} in mathbb{N} associated to each edge (i,j) in E, the Steiner Tree Problem in graphs (STP) consists in finding a minimum-weight subgraph of G that spans all nodes in Q. In this paper, we consider the Min-max Regret Steiner Tree Problem with Interval Costs (MMR-STP), a robust variant of STP. In this variant, the weight of the edges are not known in advance, but are assumed to vary in the interval [l_{ij}, u_{ij}]. We develop an ILP formulation, an exact algorithm, and three heuristics for this problem. Computational experiments, performed on generalizations of the classical STP instances, evaluate the efficiency and the limits of the proposed methods.



قيم البحث

اقرأ أيضاً

We consider a max-min variation of the classical problem of maximizing a linear function over the base of a polymatroid. In our problem we assume that the vector of coefficients of the linear function is not a known parameter of the problem but is so me vertex of a simplex, and we maximize the linear function in the worst case. Equivalently, we view the problem as a zero-sum game between a maximizing player whose mixed strategy set is the base of the polymatroid and a minimizing player whose mixed strategy set is a simplex. We show how to efficiently obtain optimal strategies for both players and an expression for the value of the game. Furthermore, we give a characterization of the set of optimal strategies for the minimizing player. We consider fou
185 - Edouard Pauwels 2021
We study the ridge method for min-max problems, and investigate its convergence without any convexity, differentiability or qualification assumption. The central issue is to determine whether the parametric optimality formula provides a conservative field, a notion of generalized derivative well suited for optimization. The answer to this question is positive in a semi-algebraic, and more generally definable, context. The proof involves a new characterization of definable conservative fields which is of independent interest. As a consequence, the ridge method applied to definable objectives is proved to have a minimizing behavior and to converge to a set of equilibria which satisfy an optimality condition. Definability is key to our proof: we show that for a more general class of nonsmooth functions, conservativity of the parametric optimality formula may fail, resulting in an absurd behavior of the ridge method.
A recent breakthrough by Ambainis, Balodis, Iraids, Kokainis, Pr=usis and Vihrovs (SODA19) showed how to construct faster quantum algorithms for the Traveling Salesman Problem and a few other NP-hard problems by combining in a novel way quantum searc h with classical dynamic programming. In this paper, we show how to apply this approach to the minimum Steiner tree problem, a well-known NP-hard problem, and construct the first quantum algorithm that solves this problem faster than the best known classical algorithms. More precisely, the complexity of our quantum algorithm is $mathcal{O}(1.812^kpoly(n))$, where $n$ denotes the number of vertices in the graph and $k$ denotes the number of terminals. In comparison, the best known classical algorithm has complexity $mathcal{O}(2^kpoly(n))$.
Recent applications in machine learning have renewed the interest of the community in min-max optimization problems. While gradient-based optimization methods are widely used to solve such problems, there are however many scenarios where these techni ques are not well-suited, or even not applicable when the gradient is not accessible. We investigate the use of direct-search methods that belong to a class of derivative-free techniques that only access the objective function through an oracle. In this work, we design a novel algorithm in the context of min-max saddle point games where one sequentially updates the min and the max player. We prove convergence of this algorithm under mild assumptions, where the objective of the max-player satisfies the Polyak-L{}ojasiewicz (PL) condition, while the min-player is characterized by a nonconvex objective. Our method only assumes dynamically adjusted accurate estimates of the oracle with a fixed probability. To the best of our knowledge, our analysis is the first one to address the convergence of a direct-search method for min-max objectives in a stochastic setting.
192 - A. Karim Abu-Affash 2010
Given two sets of points in the plane, $P$ of $n$ terminals and $S$ of $m$ Steiner points, a Steiner tree of $P$ is a tree spanning all points of $P$ and some (or none or all) points of $S$. A Steiner tree with length of longest edge minimized is cal led a bottleneck Steiner tree. In this paper, we study the Euclidean bottleneck Steiner tree problem: given two sets, $P$ and $S$, and a positive integer $k le m$, find a bottleneck Steiner tree of $P$ with at most $k$ Steiner points. The problem has application in the design of wireless communication networks. We first show that the problem is NP-hard and cannot be approximated within factor $sqrt{2}$, unless $P=NP$. Then, we present a polynomial-time approximation algorithm with performance ratio 2.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا