ترغب بنشر مسار تعليمي؟ اضغط هنا

Interplanetary magnetic flux rope observed at ground level by HAWC

293   0   0.0 ( 0 )
 نشر من قبل Alejandro Lara
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the ground-level detection of a Galactic Cosmic-Ray (GCR) flux enhancement lasting $sim$ 17 hr and associated with the passage of a magnetic flux rope (MFR) over the Earth. The MFR was associated with a slow Coronal Mass Ejection (CME) caused by the eruption of a filament on 2016 October 9. Due to the quiet conditions during the eruption and the lack of interactions during the interplanetary CME transport to the Earth, the associated MFR preserved its configuration and reached the Earth with a strong magnetic field, low density, and a very low turbulence level compared to the local background, thus generating the ideal conditions to redirect and guide GCRs (in the $sim$ 8 to 60 GV rigidity range) along the magnetic field of the MFR. An important negative $B_Z$ component inside the MFR caused large disturbances in the geomagnetic field and a relatively strong geomagnetic storm. However, these disturbances are not the main factors behind the GCR enhancement. Instead, we found that the major factor was the alignment between the MFR axis and the asymptotic direction of the observer.



قيم البحث

اقرأ أيضاً

124 - H. Q. Feng , G. Q. Zhao , 2019
Small interplanetary magnetic flux ropes (SIMFRs) are often detected by space satellites in the interplanetary space near 1 AU. These ropes can be fitted by a cylindrically symmetric magnetic model. The durations of SIMFRsare usually <12 h, and the d iameters of SIMFRsare <0.20 AU and show power law distribution. Most SIMFRs are observed in the typically slow solar wind (<500 km/s), and only several events are observed with high speed (>700 km/s). Some SIMFRs demonstrate abnormal heavy ion compositions, such as abnormally high He abundance, abnormally high average iron ionization, and enhanced O7+ abundance. These SIMFRs originate from remarkablyhot coronal origins. Approximately 74.5% SIMFRs exhibit counterstreamingsuprathermal electron signatures. Given their flux rope configuration, SIMFRs are potentially more effective for substorms. SIMFRs and magnetic clouds havemany similar observational properties but also show some different observations.These similar properties may indicate that SIMFRs are the interplanetary counterparts of small coronal mass ejections. Some direct bodies of evidence have confirmed that several SIMFRs areinterplanetary counterparts of CMEs. However, their different properties may imply that some SIMFRs haveinterplanetary origins. Therefore, one of the main aims of future research on SIMFRs is to determine whether SIMFRs originate from two different sources, that is, some events are formed in the solar coronal atmosphere, whereas others originate from the interplanetary space. Finally, in this study, we offer some prospects that shouldbe addressed in the future.
Magnetic flux ropes (MFRs) are one kind of fundamental structures in the solar physics, and involved in various eruption phenomena. Twist, characterizing how the magnetic field lines wind around a main axis, is an intrinsic property of MFRs, closely related to the magnetic free energy and stableness. So far it is unclear how much amount of twist is carried by MFRs in the solar atmosphere and in heliosphere and what role the twist played in the eruptions of MFRs. Contrasting to the solar MFRs, there are lots of in-situ measurements of magnetic clouds (MCs), the large-scale MFRs in interplanetary space, providing some important information of the twist of MFRs. Thus, starting from MCs, we investigate the twist of interplanetary MFRs with the aid of a velocity-modified uniform-twist force-free flux rope model. It is found that most of MCs can be roughly fitted by the model and nearly half of them can be fitted fairly well though the derived twist is probably over-estimated by a factor of 2.5. By applying the model to 115 MCs observed at 1 AU, we find that (1) the twist angles of interplanetary MFRs generally follow a trend of about $0.6frac{l}{R}$ radians, where $frac{l}{R}$ is the aspect ratio of a MFR, with a cutoff at about $12pi$ radians AU$^{-1}$, (2) most of them are significantly larger than $2.5pi$ radians but well bounded by $2frac{l}{R}$ radians, (3) strongly twisted magnetic field lines probably limit the expansion and size of MFRs, and (4) the magnetic field lines in the legs wind more tightly than those in the leading part of MFRs. These results not only advance our understanding of the properties and behavior of interplanetary MFRs, but also shed light on the formation and eruption of MFRs in the solar atmosphere. A discussion about the twist and stableness of solar MFRs are therefore given.
Interplanetary coronal mass ejections (ICMEs) often consist of a shock wave, sheath region, and ejecta region. The ejecta regions are divided into two broad classes: magnetic clouds (MC) that exhibit the characteristics of magnetic flux ropes and non -magnetic clouds (NMC) that do not. As CMEs result from eruption of magnetic flux ropes, it is important to answer why NMCs do not have the flux rope features. One claims that NMCs lose their original flux rope features due to the interactions between ICMEs or ICMEs and other large scale structures during their transit in the heliosphere. The other attributes this phenomenon to the geometric selection effect, i.e., when an ICME has its nose (flank, including leg and non-leg flanks) pass through the observing spacecraft, the MC (NMC) features will be detected along the spacecraft trajectory within the ejecta. In this Letter, we examine which explanation is more reasonable through the geometric properties of ICMEs. If the selection effect leads to different ejecta types, MCs should have narrower sheath region compared to NMCs from the statistical point of view, which is confirmed by our statistics. Besides, we find that NMCs have the similar size in solar cycles 23 and 24, and NMCs are smaller than MCs in cycle 23 but larger than MCs in cycle 24. This suggests that most NMCs have their leg flank pass through the spacecraft. Our geometric analyses support that all ICMEs should have a magnetic flux rope structure near 1 AU.
One of the major discoveries of Hinodes Extreme-ultraviolet Imaging Spectrometer (EIS) is the presence of upflows at the edges of active regions. As active regions are magnetically connected to the large-scale field of the corona, these upflows are a likely contributor to the global mass cycle in the corona. Here we examine the driving mechanism(s) of the very strong upflows with velocities in excess of 70 km/s, known as blue-wing asymmetries, observed during the eruption of a flux rope in AR 10977 (eruptive flare SOL2007-12-07T04:50). We use Hinode/EIS spectroscopic observations combined with magnetic-field modeling to investigate the possible link between the magnetic topology of the active region and the strong upflows. A Potential Field Source Surface (PFSS) extrapolation of the large-scale field shows a quadrupolar configuration with a separator lying above the flux rope. Field lines formed by induced reconnection along the separator before and during the flux-rope eruption are spatially linked to the strongest blue-wing asymmetries in the upflow regions. The flows are driven by the pressure gradient created when the dense and hot arcade loops of the active region reconnect with the extended and tenuous loops overlying it. In view of the fact that separator reconnection is a specific form of the more general quasi-separatrix (QSL) reconnection, we conclude that the mechanism driving the strongest upflows is, in fact, the same as the one driving the persistent upflows of approx. 10 - 20 km/s observed in all active regions.
We present the analysis of an unusual failed eruption captured in high cadence and in many wavelengths during the observing campaign in support of the VAULT2.0 sounding rocket launch. The refurbished Very high Angular resolution Ultraviolet Telescope (VAULT2.0) is a Ly$alpha$ ($lambda$ 1216 {AA}) spectroheliograph launched on September 30, 2014. The campaign targeted active region NOAA AR 12172 and was closely coordinated with the Hinode and IRIS missions and several ground-based observatories (NSO/IBIS, SOLIS, and BBSO). A filament eruption accompanied by a low level flaring event (at the GOES C-class level) occurred around the VAULT2.0 launch. No Coronal Mass Ejection (CME) was observed. The eruption and its source region, however, were recorded by the campaign instruments in many atmospheric heights ranging from the photosphere to the corona in high cadence and spatial resolution. This is a rare occasion which enables us to perform a comprehensive investigation on a failed eruption. We find that a rising Magnetic Flux Rope-like (MFR) structure was destroyed during its interaction with the ambient magnetic field creating downflows of cool plasma and diffuse hot coronal structures reminiscent of cusps. We employ magnetofrictional simulations to show that the magnetic topology of the ambient field is responsible for the destruction of the MFR. Our unique observations suggest that the magnetic topology of the corona is a key ingredient for a successful eruption.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا