ﻻ يوجد ملخص باللغة العربية
As more and more data being created every day, all of it can help take better decisions with data analysis. It is not different from data generated in financial markets. Here we examine the process of how the global economy is affected by the market sentiment influenced by the micro-blogging data (tweets) of American President Donald Trump. The news feed is gathered from The Guardian and Bloomberg from the period between December 2016 and October 2019, which are used to further identify the potential tweets that influenced the markets as measured by changes in equity indices.
Multifractality is ubiquitously observed in complex natural and socioeconomic systems. Multifractal analysis provides powerful tools to understand the complex nonlinear nature of time series in diverse fields. Inspired by its striking analogy with hy
Different investment strategies are adopted in short-term and long-term depending on the time scales, even though time scales are adhoc in nature. Empirical mode decomposition based Hurst exponent analysis and variance technique have been applied to
We use rank correlations as distance functions to establish the interconnectivity between stock returns, building weighted signed networks for the stocks of seven European countries, the US and Japan. We establish the theoretical relationship between
We propose a novel method to quantify the clustering behavior in a complex time series and apply it to a high-frequency data of the financial markets. We find that regardless of used data sets, all data exhibits the volatility clustering properties,
Although the threshold network is one of the most used tools to characterize the underlying structure of a stock market, the identification of the optimal threshold to construct a reliable stock network remains challenging. In this paper, the concept