ﻻ يوجد ملخص باللغة العربية
We study the properties of a spin-down neutron impurity immersed in a low-density free Fermi gas of spin-up neutrons. In particular, we analyze its energy ($E_downarrow$), effective mass ($m^*_downarrow$) and quasiparticle residue ($Z_downarrow$). Results are compared with those of state-of-the-art quantum Monte Carlo calculations of the attractive Fermi polaron realized in ultracold atomic gases experiments, and with those of previous studies of the neutron polaron. Calculations are performed within the Brueckner--Hartree--Fock approach using the chiral two-body nucleon-nucleon interaction of Entem and Machleidt at N$^3$LO with a 500 MeV cut-off and the Argonne V18 phenomenological potential. Only contributions from the $^1S_0$ partial wave, which is the dominant one in the low-density region considered, are included. Contributions from three-nucleon forces are expected to be irrelevant at these densities and, therefore, are neglected in the calculation. Our results show that for Fermi momenta between $sim 0.25$ and $sim 0.45$ fm$^{-1}$ the energy, effective mass and quasiparticle residue of the impurity vary only slightly, respectively, in the ranges $-0.604,E_F < E_downarrow < -0.635,E_F $, $1.300,m < m^*_downarrow < 1.085, m$ and $0.741 <Z_downarrow< 0.836$ in the case of the chiral interaction, and $-0.621,E_F < E_downarrow < -0.643,E_F $, $1.310,m < m^*_downarrow < 1.089, m$ and $0.739 <Z_downarrow< 0.832$ when using the Argonne V18 potential. These results are compatible with those derived from ultracold atoms and show that a spin-down neutron impurity in a free Fermi gas of spin-up neutrons with a Fermi momentum in the range $0.25lesssim k_F lesssim 0.45$ fm$^{-1}$ exhibits properties very similar to those of an attractive Fermi polaron in the unitary limit.
We review the properties of neutron matter in the low-density regime. In particular, we revise its ground state energy and the superfluid neutron pairing gap, and analyze their evolution from the weak to the strong coupling regime. The calculations o
We study the Bose-Einstein condensation of fermionic pairs in the uniform neutron matter by using the concept of the off-diagonal long-range order of the two-body density matrix of the system. We derive explicit formulas for the condensate density $r
Using the Hellmann--Feynman theorem we analyze the contribution of the different terms of the nucleon-nucleon interaction to the spin symmetry energy of neutron matter. The analysis is performed within the microscopic Brueckner--Hartree--Fock approac
Neutron matter at low density is studied within the hole-line expansion. Calculations are performed in the range of Fermi momentum $k_F$ between 0.4 and 0.8 fm$^{-1}$. It is found that the Equation of State is determined by the $^1S_0$ channel only,
We consider pairing in a dilute system of Fermions with a short-range interaction. While the theory is ill-defined for a contact interaction, the BCS equations can be solved in the leading order of low-energy effective field theory. The integrals are