ترغب بنشر مسار تعليمي؟ اضغط هنا

Reactivity screening of single atoms on modified graphene surface -- From formation and scaling relations to catalytic activity

63   0   0.0 ( 0 )
 نشر من قبل Igor Pasti
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Single atom catalysts (SACs) present the ultimate level of catalyst utilization, which puts them in the focus of current research. For this reason, their understanding is crucial for the development of new efficient catalytic systems. Using Density Functional Theory calculations, model SACs consisted of nine metals (Ni, Cu, Ru, Rh, Pd, Ag, Ir, Pt and Au) on four different supports (pristine graphene, N- and B-doped graphene and graphene with single vacancy) were analyzed. Among them, only graphene with a single vacancy enables the formation of SACs, which are stable in terms of aggregation and dissolution under harsh conditions of electrocatalysis. Reactivity of models SACs was probed using atomic (hydrogen and A = C, N, O and S) and molecular adsorbates (AHx, x = 1, 2, 3 or 4, depending on A), giving nearly 600 different systems included in this study. Scaling relations between adsorption energies of A and AHx on model SACs were confirmed. However, the scaling is broken for the case of CH3. There is also an evident scaling between adsorption energies of atomic and molecular adsorbates on metals SAs supported by pristine, N-doped and B-doped graphene, which originates from similar electronic structures of SAs on these supports. Using the obtained data, we have analyzed the hydrogen evolution on the model SACs. Only M@graphene vacancy systems (excluding Ag and Au) are stable under hydrogen evolution conditions in highly acidic solutions. Additional interfacial effects are discussed and the need for proper theoretical treatment when studying SACs interactions with molecular species.



قيم البحث

اقرأ أيضاً

68 - A. S. Dobrota 2019
Catalysis has entered everyday life through a number of technological processes relying on different catalytic systems. The increasing demand for such systems requires rationalization of the use of their expensive components, like noble metal catalys ts. As such, a catalyst with low noble metal concentration, in which each one of the noble atoms is active, would reach the lowest price possible. Nevertheless, there are no reactivity descriptors outlined for this type of low coordinated supported atoms. Using DFT calculations, we consider three diverse systems as models of single atom catalysts. We investigate monomers and bimetallic dimers of Ru, Rh, Pd, Ir and Pt on MgO(001), Cu adatom on thin Mo(001)-supported films (NaF, MgO and ScN) and single Pt adatoms on oxidized graphene surfaces. Reactivity of these metal atoms was probed by CO. In each case we see the interaction through the donation-backdonation mechanism. In some cases the CO adsorption energies can be linked to the position of the d-band center and the charge of the adatom. Higher positioned d-band center and less charged supported single atoms bind CO weaker. Also, in some cases metal atoms less strongly bonded to the substrate bind CO more strongly. The results suggest that the identification of common activity descriptor(s) for single metal atoms on foreign supports is a difficult task with no unique solution. However, it is also suggested that the stability of adatoms and strong anchoring to the support are prerequisites for the application of descriptor-based search for novel single atom catalysts.
The differences in the behavior of Re (n-type) and Au (p-type) dopant atoms in single-layered MoS2 were investigated by in situ scanning transmission electron microscopy. Re atoms tend to occupy Mo sites, while Au atoms exist as adatoms and show larg er mobility under the electron beam. Re substituted to Mo site showed enhanced chemical affinity, evidenced by agglomeration of Re adatoms around these sites. This may explain the difficulties in achieving a high compositional rate of homogeneous Re doping in MoS2. In addition, an in situ coverage experiment together with density functional theory calculations discovered a high surface reactivity and agglomeration of other impurity atoms such as carbon at the Re doped sites.
Realization of graphene moire superstructures on the surface of 4d and 5d transition metals offers templates with periodically modulated electron density, which is responsible for a number of fascinating effects, including the formation of quantum do ts and the site selective adsorption of organic molecules or metal clusters on graphene. Here, applying the combination of scanning probe microscopy/spectroscopy and the density functional theory calculations, we gain a profound insight into the electronic and topographic contributions to the imaging contrast of the epitaxial graphene/Ir(111) system. We show directly that in STM imaging the electronic contribution is prevailing compared to the topographic one. In the force microscopy and spectroscopy experiments we observe a variation of the interaction strength between the tip and high-symmetry places within the graphene moire supercell, which determine the adsorption cites for molecules or metal clusters on graphene/Ir(111).
Development of novel materials may often require a rational use of high price components, like noble metals, in combination with the possibility to tune their properties in a desirable way. Here we present a theoretical DFT study of Au and Pd single atoms supported by doped MgO(001). By introducing B, C and N impurities into the MgO(001) surface, the interaction between the surface and the supported metal adatoms can be adjusted. Impurity atoms act as strong binding sites for Au and Pd adatoms and can help to produce highly dispersed metal particles. The reactivity of metal atoms supported by doped MgO(001), as probed by CO, is altered compared to their counterparts on pristine MgO(001). We find that Pd atoms on doped MgO(001) are less reactive than on perfect MgO(001). In contrast, Au adatoms bind CO much stronger when placed on doped MgO(001). In the case of Au on N-doped MgO(001) we find that charge redistribution between the metal atom and impurity takes place even when not in direct contact, which enhances the interaction of Au with CO. The presented results suggest possible ways for optimizing the reactivity of oxide supported metal catalysts through impurity engineering.
Here, we examine the influence of surface chemical reactivity toward ambient gases on the performance of nanodevices based on two-dimensional materials beyond graphene and novel topological phases of matter. While surface oxidation in ambient conditi ons was observed for silicene and phosphorene with subsequent reduction of the mobility of charge carriers, nanodevices with active channels of indium selenide, bismuth chalcogenides and transition-metal dichalcogenides are stable in air. However, air-exposed indium selenide suffers of p-type doping due to water decomposition on Se vacancies, whereas the low mobility of charge carriers in transition-metal dichalcogenides increases the response time of nanodevices. Conversely, bismuth chalcogenides require a control of crystalline quality, which could represent a serious hurdle for up scaling.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا