ﻻ يوجد ملخص باللغة العربية
Single atom catalysts (SACs) present the ultimate level of catalyst utilization, which puts them in the focus of current research. For this reason, their understanding is crucial for the development of new efficient catalytic systems. Using Density Functional Theory calculations, model SACs consisted of nine metals (Ni, Cu, Ru, Rh, Pd, Ag, Ir, Pt and Au) on four different supports (pristine graphene, N- and B-doped graphene and graphene with single vacancy) were analyzed. Among them, only graphene with a single vacancy enables the formation of SACs, which are stable in terms of aggregation and dissolution under harsh conditions of electrocatalysis. Reactivity of models SACs was probed using atomic (hydrogen and A = C, N, O and S) and molecular adsorbates (AHx, x = 1, 2, 3 or 4, depending on A), giving nearly 600 different systems included in this study. Scaling relations between adsorption energies of A and AHx on model SACs were confirmed. However, the scaling is broken for the case of CH3. There is also an evident scaling between adsorption energies of atomic and molecular adsorbates on metals SAs supported by pristine, N-doped and B-doped graphene, which originates from similar electronic structures of SAs on these supports. Using the obtained data, we have analyzed the hydrogen evolution on the model SACs. Only M@graphene vacancy systems (excluding Ag and Au) are stable under hydrogen evolution conditions in highly acidic solutions. Additional interfacial effects are discussed and the need for proper theoretical treatment when studying SACs interactions with molecular species.
Catalysis has entered everyday life through a number of technological processes relying on different catalytic systems. The increasing demand for such systems requires rationalization of the use of their expensive components, like noble metal catalys
The differences in the behavior of Re (n-type) and Au (p-type) dopant atoms in single-layered MoS2 were investigated by in situ scanning transmission electron microscopy. Re atoms tend to occupy Mo sites, while Au atoms exist as adatoms and show larg
Realization of graphene moire superstructures on the surface of 4d and 5d transition metals offers templates with periodically modulated electron density, which is responsible for a number of fascinating effects, including the formation of quantum do
Development of novel materials may often require a rational use of high price components, like noble metals, in combination with the possibility to tune their properties in a desirable way. Here we present a theoretical DFT study of Au and Pd single
Here, we examine the influence of surface chemical reactivity toward ambient gases on the performance of nanodevices based on two-dimensional materials beyond graphene and novel topological phases of matter. While surface oxidation in ambient conditi