ترغب بنشر مسار تعليمي؟ اضغط هنا

Realization of electron antidoping by modulating the breathing distortion in BaBiO$_3$

137   0   0.0 ( 0 )
 نشر من قبل Hui Cao
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The recent proposal of antidoping scheme breaks new ground in conceiving conversely functional materials and devices, yet the few available examples belong to the correlated electron systems. Here we demonstrate both theoretically and experimentally that the main group oxide BaBiO$_3$ is a model system for antidoping using oxygen vacancies. The first principles calculations show that the band gap systematically increases due to the strongly enhanced BiO breathing distortions away from the vacancies and the annihilation of Bi 6s and O 2p hybridized conduction bands near the vacancies. The spectroscopic experiments confirm the band gap increasing systematically with electron doping, with a maximal gap enhancement of 75% when the films stoichiometry is reduced to BaBiO$_{2.75}$. The Raman and diffraction experiments show the suppression of the overall breathing distortion. The study unambiguously demonstrates the remarkable antidoping effect in a material without strong electron correlations and underscores the importance of bond disproportionation in realizing such an effect.

قيم البحث

اقرأ أيضاً

The recent discovery of 2D superconductivity at the interface of BaPbO$_3$ (BPO) and BaBiO$_3$ (BBO) has motivated us to study in depth the electronic and structural properties and the relation between them in this particular heterostructure, by mean s of first-principles calculations. Our results indicate that the breathing distortions, the charge ordering and the semiconducting behaviour that characterize the parent compound BBO in its bulk form, are preserved at the innermost layers of the BBO side of the BPO/BBO bilayer. On the other hand, at the interface, there is a partial breaking of the breathing distortions with a concomitant charge transfer between the interfacial Bi ions and the on top BPO layer. We show that two types of carriers coexist at the interface, the delocalized 3D like sp states coming from Pb ions and the quasi 2D s states from the Bi ones. We obtain a substantial electron-phonon coupling between the 2D Bi states with the interfacial stretching phonon mode and a large density of states that can explain the critical temperature experimentally observed bellow 3.5 K. We hope these findings will motivate future research to explore different interfaces with charge ordered semiconductors as BBO in order to trigger this fascinating 2D behavior.
We present a systematic density functional theory (DFT) plus Hubbard $U$ study of structural trends and the stability of different magnetically ordered states across the rare-earth nickelate series, $R$NiO$_3$, with $R$ from Lu to La. In particular, we investigate how the magnetic order, the change of the rare-earth ion, and the Hubbard interaction $U$ are affecting the bond-length disproportionation between the nickel sites. Our results show that structural parameters can be obtained that are in very good agreement with present experimental data, and that DFT+$U$ is in principle able to capture the most important structural trends across the nickelate series. However, the amplitude of the bond-length disproportionation depends very strongly on the specific value used for the Hubbard $U$ parameter and also on the type of magnetic order imposed in the calculation. Regarding the relative stability of different magnetic orderings, a realistic antiferromagnetic order, consistent with the experimental observations, is favored for small $U$ values, and becomes more and more favorable compared to the ferromagnetic state towards the end of the series (i.e., towards $R$=Pr). Nevertheless, it seems that the stability of the ferromagnetic state is generally overestimated within the DFT+$U$ calculations. Our work provides a profound starting point for more detailed experimental investigations, and also for future studies using more advanced computational techniques such as, e.g., DFT combined with dynamical mean-field theory.
BaBiO$_3$ is a charged ordered Peierls-like perovskite well known for its superconducting properties upon K or Pb doping. We present a study on the transport and electronic properties of BaBiO$_3$ perovskite with strong Bi-deficiency. We show that it is possible to synthesize BaBiO$_3$ thin layers with Bi-vacancies above 8-10% by depositing an yttrium-stabilized zirconia capping layer. By combining transport measurements with ab initio calculations we propose an scenario where the Bi-vacancies give rise to the formation of polarons and suggest that the electrical transport is dominated by the migration of these polarons trapped at Bi$^{3+}$ sites. Our work shows that cation vacancies engineering -- hardly explored to date -- appears as a promising pathway to tune the electronic and functional properties of perovskites.
BaBiO$_3$ is a mixed-valence perovskite which escapes the metallic state through a Bi valence (and Bi-O bond) disproportionation or CDW distortion, resulting in a semiconductor with a gap of 0.8 eV at zero pressure. The evolution of structural and el ectronic properties at high pressure is, however, largely unknown. Pressure, one might have hoped, could reduce the disproportionation, making the two Bi ions equivalent and bringing the system closer to metallicity or even to superconductivity, such as is attained at ambient pressure upon metal doping. We address the high-pressure phase diagram of pristine BaBiO$_3$ by ab initio DFT calculations based on GGA and hybrid functionals in combination with crystal structure prediction methods based on evolutionary algorithms, molecular dynamics and metadynamics. The calculated phase diagram from 0 to 50 GPa indicates that pristine BaBiO$_3$ resists metallization under pressure, undergoing instead at room temperature structural phase transitions from monoclinic textit{I2/m} to nearly tetragonal textit{P-1} at 7 GPa, possibly to monoclinic textit{C2/m} at 27 GPa, and to triclinic textit{P1} at 43 GPa. Remarkably, all these phases sustain and in fact increase the inequivalence of two Bi neighboring sites and of their Bi-O bonds and, in all cases except semimetallic textit{C2/m}, the associated insulating character. We then present high-pressure resistivity data which generally corroborate these results, and show that the insulating character persists at least up to 80 GPa, suggesting that the textit{C2/m} phase is probably an artifact of the small computational cell.
90 - D. T. Harris , N. Cambell , C. Di 2018
The isotropic, non-magnetic doped BaBiO$_3$ superconductors maintain some similarities to high-Tc cuprates, while also providing a cleaner system for isolating charge density wave (CDW) physics that commonly competes with superconductivity. Artificia l layered superlattices offer the possibility of engineering the interaction between superconductivity and CDW. Here we stabilize a low temperature, fluctuating short range CDW order by using artificially layered epitaxial (BaPbO$_3$)$_{3m}$/(BaBiO$_3$)$_m$ (m = 1-10 unit cells) superlattices that is not present in the optimally doped BaPb$_{0.75}$Bi$_{0.25}$O$_3$ alloy with the same overall chemical formula. Charge transfer from BaBiO$_3$ to BaPbO$_3$ effectively dopes the former and suppresses the long range CDW, however as the short range CDW fluctuations strengthens at low temperatures charge appears to localize and superconductivity is weakened. The monolayer structural control demonstrated here provides compelling implications to access controllable, local density-wave orders absent in bulk alloys and manipulate phase competition in unconventional superconductors.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا