ﻻ يوجد ملخص باللغة العربية
Geometrically frustrated spin-chain compounds such as Ca3Co2O6 exhibit extremely slow relaxation under a changing magnetic field. Consequently, both low-temperature laboratory experiments and Monte Carlo simulations have shown peculiar out-of-equilibrium magnetization curves, which arise from trapping in metastable configurations. In this work we simulate this phenomenon in a superconducting quantum annealing processor, allowing us to probe the impact of quantum fluctuations on both equilibrium and dynamics of the system. Increasing the quantum fluctuations with a transverse field reduces the impact of metastable traps in out-of-equilibrium samples, and aids the development of three-sublattice ferrimagnetic (up-up-down) long-range order. At equilibrium we identify a finite-temperature shoulder in the 1/3-to-saturated phase transition, promoted by quantum fluctuations but with entropic origin. This work demonstrates the viability of dynamical as well as equilibrium studies of frustrated magnetism using large-scale programmable quantum systems, and is therefore an important step toward programmable simulation of dynamics in materials using quantum hardware.
We study the real-time dynamics of a small bubble of false vacuum in a quantum spin chain near criticality, where the low-energy physics is described by a relativistic (1+1)-dimensional quantum field theory. Such a bubble can be thought of as a confi
The evaluation of the performance of adiabatic annealers is hindered by lack of efficient algorithms for simulating their behaviour. We exploit the analyticity of the standard model for the adiabatic quantum process to develop an efficient recursive
We consider parameter estimations with probes being the boundary driven/dissipated non- equilibrium steady states of XXZ spin 1/2 chains. The parameters to be estimated are the dissipation coupling and the anisotropy of the spin-spin interaction. In
The magnetic behavior of the Ca3Co2O6 spin chain compound is characterized by a large Ising-like character of its ferromagnetic chains, set on triangular lattice, that are antiferromagnetically coupled. At low temperature, T < 7K, the 3D antiferromag
Closed quantum many-body systems out of equilibrium pose several long-standing problems in physics. Recent years have seen a tremendous progress in approaching these questions, not least due to experiments with cold atoms and trapped ions in instance