ترغب بنشر مسار تعليمي؟ اضغط هنا

Automated coordination corrected enthalpies with AFLOW-CCE

306   0   0.0 ( 0 )
 نشر من قبل Stefano Curtarolo
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The computational design of materials with ionic bonds poses a critical challenge to thermodynamic modeling since density functional theory yields inaccurate predictions of their formation enthalpies. Progress requires leveraging physically insightful correction methods. The recently introduced coordination corrected enthalpies (CCE) method delivers accurate formation enthalpies with mean absolute errors close to room temperature thermal energy, i.e., 25meV/atom. The CCE scheme, depending on the number of cation-anion bonds and oxidation state of the cation, requires an automated analysis of the system to determine and apply the correction. Here, we present AFLOW-CCE -- our implementation of CCE into the AFLOW framework for computational materials design. It features a command line tool, a web interface and a Python environment. The workflow includes a structural analysis, automatically determines oxidation numbers, and accounts for temperature effects by parametrizing vibrational contributions to the formation enthalpy per bond.

قيم البحث

اقرأ أيضاً

The correct calculation of formation enthalpy is one of the enablers of ab-initio computational materials design. For several classes of systems (e.g. oxides) standard density functional theory produces incorrect values. Here we propose the Coordinat ion Corrected Enthalpies method (CCE), based on the number of nearest neighbor cation-anion bonds, and also capable of correcting relative stability of polymorphs. CCE uses calculations employing the Perdew, Burke and Ernzerhof (PBE), Local Density Approximation (LDA) and Strongly Constrained and Appropriately Normed (SCAN) exchange correlation functionals, in conjunction with a quasiharmonic Debye model to treat zero-point vibrational and thermal effects. The benchmark, performed on binary and ternary oxides (halides), shows very accurate room temperature results for all functionals, with the smallest mean absolute error of 27 (24) meV/atom obtained with SCAN. The zero-point vibrational and thermal contributions to the formation enthalpies are small and with different signs - largely cancelling each other.
Accelerating the calculations of finite-temperature thermodynamic properties is a major challenge for rational materials design. Reliable methods can be quite expensive, limiting their effective applicability in autonomous high-throughput workflows. Here, the 3-phonons quasi-harmonic approximation (QHA) method is introduced, requiring only three phonon calculations to obtain a thorough characterization of the material. Leveraging a Taylor expansion of the phonon frequencies around the equilibrium volume, the method efficiently resolves the volumetric thermal expansion coefficient, specific heat at constant pressure, the enthalpy, and bulk modulus. Results from the standard QHA and experiments corroborate the procedure, and additional comparisons are made with the recently developed self-consistent QHA. The three approaches - 3-phonons, standard, and self- consistent QHAs - are all included within the automated, open-source framework AFLOW, allowing automated determination of properties with various implementations within the same framework.
The traditional paradigm for materials discovery has been recently expanded to incorporate substantial data driven research. With the intent to accelerate the development and the deployment of new technologies, the AFLOW Fleet for computational mater ials design automates high-throughput first principles calculations, and provides tools for data verification and dissemination for a broad community of users. AFLOW incorporates different computational modules to robustly determine thermodynamic stability, electronic band structures, vibrational dispersions, thermo-mechanical properties and more. The AFLOW data repository is publicly accessible online at aflow.org, with more than 1.7 million materials entries and a panoply of queryable computed properties. Tools to programmatically search and process the data, as well as to perform online machine learning predictions, are also available.
Materials discovery via high-throughput methods relies on the availability of structural prototypes, which are generally decorated with varying combinations of elements to produce potential new materials. To facilitate the automatic generation of the se materials, we developed $textit{The AFLOW Library of Crystallographic Prototypes}$ $unicode{x2014}$ a collection of crystal prototypes that can be rapidly decorated using the AFLOW software. Part 2 of this work introduces an additional 302 crystal structure prototypes, including at least one from each of the 138 space groups not included in Part 1. Combined with Part 1, the entire library consists of 590 unique crystallographic prototypes covering all 230 space groups. We also present discussions of enantiomorphic space groups, Wigner-Seitz cells, the two-dimensional plane groups, and the various different space group notations used throughout crystallography. All structures $unicode{x2014}$ from both Part 1 and Part 2 $unicode{x2014}$ are listed in the web version of the library available at aflow.org/CrystalDatabase.
The AFLOW Library of Crystallographic Prototypes has been extended to include a total of 1,100 common crystal structural prototypes (510 new ones with Part 3), comprising all of the inorganic crystal structures defined in the seven-volume Strukturber icht series published in Germany from 1937 through 1943. We cover a history of the Strukturbericht designation system, the evolution of the system over time, and the first comprehensive index of inorganic Strukturbericht designations ever published.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا