ﻻ يوجد ملخص باللغة العربية
We establish the dual equivalence of the category of (potentially nonunital) operator systems and the category of pointed compact nc (noncommutative) convex sets, extending a result of Davidson and the first author. We then apply this dual equivalence to establish a number of results about operator systems, some of which are new even in the unital setting. For example, we show that the maximal and minimal C*-covers of an operator system can be realized in terms of the C*-algebra of continuous nc functions on its nc quasistate space, clarifying recent results of Connes and van Suijlekom. We also characterize C*-simple operator systems, i.e. operator systems with simple minimal C*-cover, in terms of their nc quasistate spaces. We develop a theory of quotients of operator systems that extends the theory of quotients of unital operator algebras. In addition, we extend results of the first author and Shamovich relating to nc Choquet simplices. We show that an operator system is a C*-algebra if and only if its nc quasistate space is an nc Bauer simplex with zero as an extreme point, and we show that a second countable locally compact group has Kazhdans property (T) if and only if for every action of the group on a C*-algebra, the set of invariant quasistates is the quasistate space of a C*-algebra.
We use Arvesons notion of strongly peaking representation to generalize uniqueness theorems for free spectrahedra and matrix convex sets which admit minimal presentations. A fully compressed separable operator system necessarily generates the C*-enve
We study subproduct systems in the sense of Shalit and Solel arising from stochastic matrices on countable state spaces, and their associated operator algebras. We focus on the non-self-adjoint tensor algebra, and Viselters generalization of the Cunt
We introduce a new and extensive theory of noncommutative convexity along with a corresponding theory of noncommutative functions. We establish noncommutative analogues of the fundamental results from classical convexity theory, and apply these ideas
We consider the reduction of problems on general noncommutative $L_p$-spaces to the corresponding ones on those associated with finite von Neumann algebras. The main tool is a unpublished result of the first named author which approximates any noncom
Let $A$ be a finite subdiagonal algebra in Arvesons sense. Let $H^p(A)$ be the associated noncommutative Hardy spaces, $0<ple8$. We extend to the case of all positive indices most recent results about these spaces, which include notably the Riesz, Sz