ﻻ يوجد ملخص باللغة العربية
The properties of interstellar grains, such as grain size distribution and grain porosity, are affected by interstellar processing, in particular, coagulation and shattering, which take place in the dense and diffuse interstellar medium (ISM), respectively. In this paper, we formulate and calculate the evolution of grain size distribution and grain porosity through shattering and coagulation. For coagulation, we treat the grain evolution depending on the collision energy. Shattering is treated as a mechanism of forming small compact fragments. The balance between these processes are determined by the dense-gas mass fraction $eta_mathrm{dense}$, which determines the time fraction of coagulation relative to shattering. We find that the interplay between shattering supplying small grains and coagulation forming porous grains from shattered grains is fundamentally important in creating and maintaining porosity. The porosity rises to 0.7--0.9 (or the filling factor 0.3--0.1) around grain radii $asim 0.1~mu$m. We also find that, in the case of $eta_mathrm{dense}=0.1$ (very efficient shattering with weak coagulation) porosity significantly enhances coagulation, creating fluffy submicron grains with filling factors lower than 0.1. The porosity enhances the extinction by 10--20 per cent at all wavelengths for amorphous carbon and at ultraviolet wavelengths for silicate. The extinction curve shape of silicate becomes steeper if we take porosity into account. We conclude that the interplay between shattering and coagulation is essential in creating porous grains in the interstellar medium and that the resulting porosity can impact the grain size distributions and extinction curves.
We investigate shattering and coagulation of dust grains in turbulent interstellar medium (ISM). The typical velocity of dust grain as a function of grain size has been calculated for various ISM phases based on a theory of grain dynamics in compress
Turbulence can significantly accelerate the growth of dust grains by accretion of molecules. For dust dynamically coupled to the gas, the growth rate scales with the square of the Mach number, which means that the growth timescale can easily be reduc
Typical galaxies emit about one third of their energy in the infrared. The origin of this emission reprocessed starlight absorbed by interstellar dust grains and reradiated as thermal emission in the infrared. In particularly dusty galaxies, such as
Dwarf spheroidal galaxies are among the most numerous galaxy population in the Universe, but their main formation and evolution channels are still not well understood. The three dwarf spheroidal satellites (NGC147, NGC185, and NGC205) of the Andromed
We study the evolution of dense clumps and provide argument that the existence of the clumps is not limited by the crossing time of the clump. We claim that the lifetimes of the clumps are determined by the turbulent motions on larger scale and predi