ترغب بنشر مسار تعليمي؟ اضغط هنا

Neutron Response of the EJ-254 Boron-Loaded Plastic Scintillator

73   0   0.0 ( 0 )
 نشر من قبل Thibault Laplace
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Gino Gabella




اسأل ChatGPT حول البحث

Organic scintillators doped with capture agents provide a detectable signal for neutrons over a broad energy range. This work characterizes the fast and slow neutron response of EJ-254, an organic plastic scintillator with 5% natural boron loading by weight. For fast neutrons, the primary mechanism for light generation in organic scintillators is n-p elastic scattering. To study the fast neutron response, the proton light yield of EJ-254 was measured at the 88-Inch Cyclotron at Lawrence Berkeley National Laboratory. Using a broad-spectrum neutron source and a double time-of-flight technique, the EJ-254 proton light yield was obtained over the energy range of approximately 270 keV to 4.5 MeV and determined to be in agreement with other plastic scintillators comprised of the same polymer base. To isolate the slow neutron response, an AmBe source with polyethylene moderator was made incident on the EJ-254 scintillator surrounded by an array of EJ-309 observation detectors. Events in the EJ-254 target coincident with the signature 477.6 keV $gamma$ ray (resulting from deexcitation of the residual $^{7}$Li nucleus following boron neutron capture) were identified. Pulse shape discrimination was used to evaluate the temporal differences in the response of EJ-254 scintillation signals arising from $gamma$-ray and fast/slow neutron interactions. Clear separation between $gamma$-ray and fast neutrons signals was not achieved and the neutron capture feature was observed to overlap both the $gamma$-ray and fast neutron bands. Taking into account the electron light nonproportionality, the neutron-capture light yield in EJ-254 was determined to be 89.4$pm$1.1 keVee.



قيم البحث

اقرأ أيضاً

Scintillator doped with a high neutron-capture cross-section material can be used to detect neutrons via their resulting gamma rays. Examples of such detectors using liquid scintillator have been successfully used in high-energy physics experiments. However, a liquid scintillator can leak and is not as amenable to modular or complex shapes as a solid scintillator. Polystyrene-based scintillators from a variety of gadolinium compounds with varying concentrations were polymerized in our laboratory. The light output, emission spectra, and attenuation length of our samples were measured and light collection strategies using a wavelength shifting (WLS) fiber were evaluated. The measured optical parameters were used to tune a Geant4-based optical Monte Carlo, enabling the trapping efficiency to be calculated. This technology was also evaluated as a possible neutron veto for the direct detection dark matter experiment, Super Cryogenic Dark Matter Search (SuperCDMS).
Detailed characterization of the newly available plastic scintillator (EJ-299-33A) having the pulse shape discrimination (PSD) property has been carried out in case of a large-sized detector (5 in.$times$5 in.). The pulse height response of the scint illator for nearly mono-energetic neutrons has been reported in case of neutron energies E$_n$ =3, 6 and 9 MeV. Important properties (figure-of-merit (FOM), time resolution, detection efficiency) of the detector has been compared with a commonly used liquid organic scintillator based detector of the same size coupled to the same PMT for uniformity in comparison. The results show that the plastic scintillator detector has about 12$%$ better time resolution. However, the FOM and detection efficiency were found to be lower than that of the liquid scintillator detector by 40 - 50$%$ and $sim $25$%$, respectively. The possibility of using the new plastic scintillator in large-scale nuclear physics experiments has been pointed out.
This paper presents the results of the fast neutron irradiation (E$_n$ > 0.5MeV) of an EJ-276 scintillator performed in the MARIA research reactor with fluence up to 5.3$times$10$^{15}$ particles/cm$^2$. In our work, four samples with size $phi$25.4~ mm$times$5~mm were tested. The changes in the light yield, emission and absorption spectrum and neutron/gamma discrimination using PuBe source before and after irradiation are presented. The figure of merit in neutron/gamma discrimination based on the charge integration method for different neutron fluences and different short gate integration times are determined.
This work reports the production and characterization of lithium-loaded liquid scintillator (LiLS) for the Precision Reactor Oscillation and Spectrum Experiment (PROSPECT). Fifty-nine 90 liter batches of LiLS (${}^6{rm Li}$ mass fraction 0.082%$pm$0. 001%) were produced and samples from all batches were characterized by measuring their optical absorbance relative to air, light yield relative to a pure liquid scintillator reference, and pulse shape discrimination capability. Fifty-seven batches passed the quality assurance criteria and were used for the PROSPECT experiment.
Three-dimensional finely grained plastic scintillator detectors bring many advantages in particle detectors, allowing a massive active target which enables a high-precision tracking of interaction products, excellent calorimetry and a sub-nanosecond time resolution. Whilst such detectors can be scaled up to several-tonnes, as required by future neutrino experiments, a relatively long production time, where each single plastic-scintillator element is independently manufactured and machined, together with potential challenges in the assembly, complicates their realisation. In this manuscript we propose a novel design for 3D granular scintillator detectors where O($1~text{cm}^3$) cubes are efficiently glued in a single block of scintillator after being produced via cast polymerization, which can enable rapid and cost-efficient detector construction. This work could become particularly relevant for the detectors of the next-generation long-baseline neutrino-oscillation experiments, such as DUNE, Hyper-Kamiokande and ESSnuB.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا