ﻻ يوجد ملخص باللغة العربية
In an atomic ensemble, quantum information is typically carried as single collective excitations. It is very advantageous if the creation of single excitations is efficient and robust. Rydberg blockade enables deterministic creation of single excitations via collective Rabi oscillation by precisely controlling the pulse area, being sensitive to many experimental parameters. In this paper, we implement the adiabatic rapid passage technique to the Rydberg excitation process in a mesoscopic atomic ensemble. We make use of a two-photon excitation scheme with an intermediate state off-resonant and sweep the laser frequency of one excitation laser. We find the chirped scheme preserves internal phases of the collective Rydberg excitation and be more robust against variance of laser intensity and frequency detuning.
We review methods for coherently controlling Rydberg quantum states of atomic ensembles using Adiabatic Rapid Passage and Stimulated Raman Adiabatic Passage. These methods are commonly used for population inversion in simple two-level and three-level
We present schemes for geometric phase compensation in adiabatic passage which can be used for the implementation of quantum logic gates with atomic ensembles consisting of an arbitrary number of strongly interacting atoms. Protocols using double seq
In this paperwe propose two theoretical schemes for implementation of quantum phase gates by engineering the phase-sensitive dark state of two atoms subjected to Rydberg-Rydberg interaction. Combining the conventional adiabatic techniques and current
We show that with adiabatic passage, one can reliably drive two-photon optical transitions between the ground states and interacting Rydberg states in a pair of atoms. For finite Rydberg interaction strengths a new adiabatic pathway towards the doubl
Quantum adiabatic passages can be greatly accelerated by a suitable control field, called a counter-diabatic field, which varies during the scan through resonance. Here, we implement this technique on the electron spin of a single nitrogen-vacancy center in diamond. We demonstrate t